Q: 倍增优化后, 还是有重复的元素, 怎么办

A: 假定重复的元素比较少, 不用考虑

Description

Marsha and Bill own a collection of marbles. They want to split the collection among themselves so that both receive an equal share of the marbles. This would be easy if all the marbles had the same value, because then they could just split the collection in half. But unfortunately, some of the marbles are larger, or more beautiful than others. So, Marsha and Bill start by assigning a value, a natural number between one and six, to each marble. Now they want to divide the marbles so that each of them gets the same total value. Unfortunately, they realize that it might be impossible to divide the marbles in this way (even if the total value of all marbles is even). For example, if there are one marble of value 1, one of value 3 and two of value 4, then they cannot be split into sets of equal value. So, they ask you to write a program that checks whether there is a fair partition of the marbles.

Input

Each line in the input file describes one collection of marbles to be divided. The lines contain six non-negative integers n1 , . . . , n6 , where ni is the number of marbles of value i. So, the example from above would be described by the input-line "1 0 1 2 0 0". The maximum total number of marbles will be 20000. 
The last line of the input file will be "0 0 0 0 0 0"; do not process this line.

Output

For each collection, output "Collection #k:", where k is the number of the test case, and then either "Can be divided." or "Can't be divided.". 
Output a blank line after each test case.

Sample Input

1 0 1 2 0 0
1 0 0 0 1 1
0 0 0 0 0 0

Sample Output

Collection #1:
Can't be divided. Collection #2:
Can be divided.

思路:

1. 倍增优化, 将 n 转化成 1, 2, 4 ..2^i , (n-前面的和), 然后应用 01背包问题处理

总结:

1. 判断恰好装满的条件为 dp[V] == V. 因为未初始化为 INF, 初始化为 INF 有个好处, 就是可以直接返回 dp[V], 但是更新 dp[v] 时需要加 dp[v] == inf 的判断

代码:

#include <iostream>
using namespace std;
int w[10];
int marble[10000];
int totalWeight;
int dp[120000];
int solve_dp() { int len = 0;
for(int i = 1; i <= 6; i ++) {
int sum = 0;
for(int j = 0;; j ++) {
if(sum + (1<<j) > w[i])
break;
marble[len++] = (1<<j)*i;
sum += (1<<j);
}
if(sum < w[i])
marble[len++] = (w[i]-sum)*i;
}
memset(dp, 0, totalWeight*sizeof(int));
// 01 背包
int V = totalWeight>>1;
dp[0] = 0;
for(int i = 0; i < len; i ++) {
for(int v = V; v >= marble[i]; v--) {
dp[v] = max(dp[v], dp[v-marble[i]]+marble[i]);
}
}
return (dp[V]==V);
}
int main() {
freopen("E:\\Copy\\ACM\\测试用例\\in.txt", "r", stdin);
int tc = 0;
do {
int sum = 0;
for(int i = 1; i <= 6; i ++) {
scanf("%d", &w[i]);
sum += w[i]*i;
}
if(sum == 0)
return 0;
tc ++;
if(sum & 1) { // 为奇数
printf("Collection #%d:\nCan't be divided.\n\n", tc);
continue;
}
// 重建 model, 转移成 01 背包问题
totalWeight = sum;
int ans = solve_dp();
if(!ans)
printf("Collection #%d:\nCan't be divided.\n\n", tc);
else
printf("Collection #%d:\nCan be divided.\n\n", tc);
}while(1);
return 0;
}

  

POJ 1014 Dividing(多重背包, 倍增优化)的更多相关文章

  1. Hdu 1059 Dividing & Zoj 1149 & poj 1014 Dividing(多重背包)

    多重背包模板- #include <stdio.h> #include <string.h> int a[7]; int f[100005]; int v, k; void Z ...

  2. POJ 1014 Dividing 多重背包

    Dividing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 63980   Accepted: 16591 Descri ...

  3. POJ 1014 Dividing (多重可行性背包)

    题意 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两份的总价值相等,其中一个物品不能切开,只能分给其中的某一方,当输入六个0是( ...

  4. Dividing 多重背包 倍增DP

    Dividing 给出n个物品的价值和数量,问是否能够平分.

  5. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  6. hdu 1059 Dividing(多重背包优化)

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  7. DFS(DP)---POJ 1014(Dividing)

    原题目:http://poj.org/problem?id=1014 题目大意: 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两 ...

  8. hdu1059 dp(多重背包二进制优化)

    hdu1059 题意,现在有价值为1.2.3.4.5.6的石头若干块,块数已知,问能否将这些石头分成两堆,且两堆价值相等. 很显然,愚蠢的我一开始并想不到什么多重背包二进制优化```因为我连听都没有听 ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

随机推荐

  1. cocos2d-x 3.0点击响应

    迄今为止,发现cocos2d-x 3.0最让人惊艳的地方就是更改了点击事件机制.(ps:迄今只看了点击事件这块,捂嘴笑~~~) cocos2d-x 2.0 只有CCLayer有点击事件处理,需要注册, ...

  2. SparkStreaming操作Kafka

    Kafka为一个分布式的消息队列,spark流操作kafka有两种方式: 一种是利用接收器(receiver)和kafaka的高层API实现. 一种是不利用接收器,直接用kafka底层的API来实现( ...

  3. 纯css3实现的圆形旋转分享按钮

    之前已经为大家介绍了好几款css3按钮,今天要为大家介绍的是一款纯css3实现的圆形旋转分享按钮.旋转的角度可以自己调整.在demo中演示了三个角度旋转.360度,60度,-360度.如图: 在线预览 ...

  4. [WF4.0 实战] AutoResetEvent具体解释(线程独占訪问资源)

    由来: 在学习工作流的过程中,宿主程序中会出现这么一段代码: staticAutoResetEvent instanceUnloaded = new AutoResetEvent(false); 然后 ...

  5. c#利用反射Assembly 对类和成员属性进行操作

    protected static void test() { //获取程序集 Assembly assembly = System.Reflection.Assembly.GetExecutingAs ...

  6. oops_根据epc定位linux_kernel_panic位置

    韩大卫@吉林师范大学 2014.12.10 转载请表明出处 ***************************************************** 关于内核报错 “Unable t ...

  7. Arrays.sort和Collections.sort实现原理解析

    Arrays.sort和Collections.sort实现原理解析 1.使用 排序 2.原理 事实上Collections.sort方法底层就是调用的array.sort方法,而且不论是Collec ...

  8. Oracle的sql语句中关键字冲突用双引号

    select distinc user from instrument where created>"TO_DATE"('2015-02-05 12:00:00', 'yyy ...

  9. easui Pagination Layout

    分页显示方式有几种 layout: ['first', 'prev', 'next', 'last'] layout: ['list', 'sep', 'first', 'prev', 'sep', ...

  10. Javascript中最常用的61个经典技巧[转]

    1. oncontextmenu="window.event.returnValue=false" 将彻底屏蔽鼠标右键<table border oncontextmenu= ...