Q: 倍增优化后, 还是有重复的元素, 怎么办

A: 假定重复的元素比较少, 不用考虑

Description

Marsha and Bill own a collection of marbles. They want to split the collection among themselves so that both receive an equal share of the marbles. This would be easy if all the marbles had the same value, because then they could just split the collection in half. But unfortunately, some of the marbles are larger, or more beautiful than others. So, Marsha and Bill start by assigning a value, a natural number between one and six, to each marble. Now they want to divide the marbles so that each of them gets the same total value. Unfortunately, they realize that it might be impossible to divide the marbles in this way (even if the total value of all marbles is even). For example, if there are one marble of value 1, one of value 3 and two of value 4, then they cannot be split into sets of equal value. So, they ask you to write a program that checks whether there is a fair partition of the marbles.

Input

Each line in the input file describes one collection of marbles to be divided. The lines contain six non-negative integers n1 , . . . , n6 , where ni is the number of marbles of value i. So, the example from above would be described by the input-line "1 0 1 2 0 0". The maximum total number of marbles will be 20000. 
The last line of the input file will be "0 0 0 0 0 0"; do not process this line.

Output

For each collection, output "Collection #k:", where k is the number of the test case, and then either "Can be divided." or "Can't be divided.". 
Output a blank line after each test case.

Sample Input

1 0 1 2 0 0
1 0 0 0 1 1
0 0 0 0 0 0

Sample Output

Collection #1:
Can't be divided. Collection #2:
Can be divided.

思路:

1. 倍增优化, 将 n 转化成 1, 2, 4 ..2^i , (n-前面的和), 然后应用 01背包问题处理

总结:

1. 判断恰好装满的条件为 dp[V] == V. 因为未初始化为 INF, 初始化为 INF 有个好处, 就是可以直接返回 dp[V], 但是更新 dp[v] 时需要加 dp[v] == inf 的判断

代码:

#include <iostream>
using namespace std;
int w[10];
int marble[10000];
int totalWeight;
int dp[120000];
int solve_dp() { int len = 0;
for(int i = 1; i <= 6; i ++) {
int sum = 0;
for(int j = 0;; j ++) {
if(sum + (1<<j) > w[i])
break;
marble[len++] = (1<<j)*i;
sum += (1<<j);
}
if(sum < w[i])
marble[len++] = (w[i]-sum)*i;
}
memset(dp, 0, totalWeight*sizeof(int));
// 01 背包
int V = totalWeight>>1;
dp[0] = 0;
for(int i = 0; i < len; i ++) {
for(int v = V; v >= marble[i]; v--) {
dp[v] = max(dp[v], dp[v-marble[i]]+marble[i]);
}
}
return (dp[V]==V);
}
int main() {
freopen("E:\\Copy\\ACM\\测试用例\\in.txt", "r", stdin);
int tc = 0;
do {
int sum = 0;
for(int i = 1; i <= 6; i ++) {
scanf("%d", &w[i]);
sum += w[i]*i;
}
if(sum == 0)
return 0;
tc ++;
if(sum & 1) { // 为奇数
printf("Collection #%d:\nCan't be divided.\n\n", tc);
continue;
}
// 重建 model, 转移成 01 背包问题
totalWeight = sum;
int ans = solve_dp();
if(!ans)
printf("Collection #%d:\nCan't be divided.\n\n", tc);
else
printf("Collection #%d:\nCan be divided.\n\n", tc);
}while(1);
return 0;
}

  

POJ 1014 Dividing(多重背包, 倍增优化)的更多相关文章

  1. Hdu 1059 Dividing & Zoj 1149 & poj 1014 Dividing(多重背包)

    多重背包模板- #include <stdio.h> #include <string.h> int a[7]; int f[100005]; int v, k; void Z ...

  2. POJ 1014 Dividing 多重背包

    Dividing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 63980   Accepted: 16591 Descri ...

  3. POJ 1014 Dividing (多重可行性背包)

    题意 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两份的总价值相等,其中一个物品不能切开,只能分给其中的某一方,当输入六个0是( ...

  4. Dividing 多重背包 倍增DP

    Dividing 给出n个物品的价值和数量,问是否能够平分.

  5. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  6. hdu 1059 Dividing(多重背包优化)

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  7. DFS(DP)---POJ 1014(Dividing)

    原题目:http://poj.org/problem?id=1014 题目大意: 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两 ...

  8. hdu1059 dp(多重背包二进制优化)

    hdu1059 题意,现在有价值为1.2.3.4.5.6的石头若干块,块数已知,问能否将这些石头分成两堆,且两堆价值相等. 很显然,愚蠢的我一开始并想不到什么多重背包二进制优化```因为我连听都没有听 ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

随机推荐

  1. dubbo源码解析-zookeeper创建节点

    前言 在之前dubbo源码解析-本地暴露中的前言部分提到了两道高频的面试题,其中一道dubbo中zookeeper做注册中心,如果注册中心集群都挂掉,那发布者和订阅者还能通信吗?在上周的dubbo源码 ...

  2. jquery ajax异步提交表单数据的方法

    使用jquery的ajax方法可以异步提交表单,成功后后台返回json数据,回调函数处理,可以不用刷新页面,达到异步的目的: 处理表单的数据可以用serialize()方法进行序列化,而如果提交的数据 ...

  3. registered the JDBC driver [com.mysql.jdbc.Driver] but failed to unregister it when the web application was stopped. To prevent a memory leak, the JDBC Driver has been forcibly unregistered.

    问题是tomcat的版本问题,tomcat新检测机制导致的这个问题,换版本可以解决问题,但不建议这么做,租用服务器不是你说换就换的.其实问题根源是BasicDataSource,BasicDataSo ...

  4. iOS播放系统声音和震动

    在需要声音的类的.h文件中添加     #import <AudioToolbox/AudioToolbox.h>static SystemSoundID shake_sound_male ...

  5. openwrt内核配置选项添加

    摘自:http://blog.csdn.net/weiniliuchao/article/details/50295527 增加内核配置选项 openwrt的.config文件中,关于内核的选项都是形 ...

  6. 简单文件系统构建ramdisk

    1.  BusyBox编译工具,包含bin, sbin, usr,  linuxrc. 2.  添加相关重要目录:dev,  etc,  mnt, proc,  sys, lib, var, tmp. ...

  7. iscsi线缆

  8. OpenResty(Nginx+Lua)开发入门

    Nginx入门 本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章: nginx启动.关闭.重启 http://www.cnblogs.com/derekchen/archi ...

  9. Nginx下轻松开启Drupal简洁链接

    大家都知道Drupal在apache环境下使用简洁链接是件很轻松的事,因为官方已经把写好的.htaccess文件附在源代码里,一般在配置里直接就可以打开了.但在Nginx下却没有那么简单,但不用担心, ...

  10. The Qt Resource System

    The Qt Resource System The Qt resource system is a platform-independent mechanism for storing binary ...