Q: 倍增优化后, 还是有重复的元素, 怎么办

A: 假定重复的元素比较少, 不用考虑

Description

Marsha and Bill own a collection of marbles. They want to split the collection among themselves so that both receive an equal share of the marbles. This would be easy if all the marbles had the same value, because then they could just split the collection in half. But unfortunately, some of the marbles are larger, or more beautiful than others. So, Marsha and Bill start by assigning a value, a natural number between one and six, to each marble. Now they want to divide the marbles so that each of them gets the same total value. Unfortunately, they realize that it might be impossible to divide the marbles in this way (even if the total value of all marbles is even). For example, if there are one marble of value 1, one of value 3 and two of value 4, then they cannot be split into sets of equal value. So, they ask you to write a program that checks whether there is a fair partition of the marbles.

Input

Each line in the input file describes one collection of marbles to be divided. The lines contain six non-negative integers n1 , . . . , n6 , where ni is the number of marbles of value i. So, the example from above would be described by the input-line "1 0 1 2 0 0". The maximum total number of marbles will be 20000. 
The last line of the input file will be "0 0 0 0 0 0"; do not process this line.

Output

For each collection, output "Collection #k:", where k is the number of the test case, and then either "Can be divided." or "Can't be divided.". 
Output a blank line after each test case.

Sample Input

1 0 1 2 0 0
1 0 0 0 1 1
0 0 0 0 0 0

Sample Output

Collection #1:
Can't be divided. Collection #2:
Can be divided.

思路:

1. 倍增优化, 将 n 转化成 1, 2, 4 ..2^i , (n-前面的和), 然后应用 01背包问题处理

总结:

1. 判断恰好装满的条件为 dp[V] == V. 因为未初始化为 INF, 初始化为 INF 有个好处, 就是可以直接返回 dp[V], 但是更新 dp[v] 时需要加 dp[v] == inf 的判断

代码:

#include <iostream>
using namespace std;
int w[10];
int marble[10000];
int totalWeight;
int dp[120000];
int solve_dp() { int len = 0;
for(int i = 1; i <= 6; i ++) {
int sum = 0;
for(int j = 0;; j ++) {
if(sum + (1<<j) > w[i])
break;
marble[len++] = (1<<j)*i;
sum += (1<<j);
}
if(sum < w[i])
marble[len++] = (w[i]-sum)*i;
}
memset(dp, 0, totalWeight*sizeof(int));
// 01 背包
int V = totalWeight>>1;
dp[0] = 0;
for(int i = 0; i < len; i ++) {
for(int v = V; v >= marble[i]; v--) {
dp[v] = max(dp[v], dp[v-marble[i]]+marble[i]);
}
}
return (dp[V]==V);
}
int main() {
freopen("E:\\Copy\\ACM\\测试用例\\in.txt", "r", stdin);
int tc = 0;
do {
int sum = 0;
for(int i = 1; i <= 6; i ++) {
scanf("%d", &w[i]);
sum += w[i]*i;
}
if(sum == 0)
return 0;
tc ++;
if(sum & 1) { // 为奇数
printf("Collection #%d:\nCan't be divided.\n\n", tc);
continue;
}
// 重建 model, 转移成 01 背包问题
totalWeight = sum;
int ans = solve_dp();
if(!ans)
printf("Collection #%d:\nCan't be divided.\n\n", tc);
else
printf("Collection #%d:\nCan be divided.\n\n", tc);
}while(1);
return 0;
}

  

POJ 1014 Dividing(多重背包, 倍增优化)的更多相关文章

  1. Hdu 1059 Dividing & Zoj 1149 & poj 1014 Dividing(多重背包)

    多重背包模板- #include <stdio.h> #include <string.h> int a[7]; int f[100005]; int v, k; void Z ...

  2. POJ 1014 Dividing 多重背包

    Dividing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 63980   Accepted: 16591 Descri ...

  3. POJ 1014 Dividing (多重可行性背包)

    题意 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两份的总价值相等,其中一个物品不能切开,只能分给其中的某一方,当输入六个0是( ...

  4. Dividing 多重背包 倍增DP

    Dividing 给出n个物品的价值和数量,问是否能够平分.

  5. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  6. hdu 1059 Dividing(多重背包优化)

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  7. DFS(DP)---POJ 1014(Dividing)

    原题目:http://poj.org/problem?id=1014 题目大意: 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两 ...

  8. hdu1059 dp(多重背包二进制优化)

    hdu1059 题意,现在有价值为1.2.3.4.5.6的石头若干块,块数已知,问能否将这些石头分成两堆,且两堆价值相等. 很显然,愚蠢的我一开始并想不到什么多重背包二进制优化```因为我连听都没有听 ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

随机推荐

  1. Dubbo阅读笔记——高级功能

    事件处理线程说明 如果事件处理的逻辑能迅速完成,并且不会发起新的IO请求,比如只是在内存中记个标识,则直接在IO线程上处理更快,因为减少了线程池调度. 但如果事件处理逻辑较慢,或者需要发起新的IO请求 ...

  2. mysql 5.7.14 安装配置方法图文教程(转)

    http://www.jb51.net/article/90259.htm ******************************** 因笔者个人需要需要在本机安装Mysql,先将安装过程记录如 ...

  3. 国际化的工具类ognl utils

    package yycg.util; import java.io.Serializable;import java.text.MessageFormat;import java.util.Array ...

  4. mysql升级php找不到pdo

    最近把mysql升级到了5.6,当时工作正常,等周末一来php报错,提示找不到pdo. 甚是奇怪啊,看了一下phpinfo,果然没有mysql的pdo驱动了. 于是用yum又重新安装php-pdo,还 ...

  5. 【Unity/Kinect】Kinect一些常用的API

    先开好这个坑,之后用到就补充,方便回顾. 获取用户相对Kinect传感器设备的位置坐标.(在Kinect坐标系中的位置) public Vector3 GetUserPosition(Int64 us ...

  6. catalina.home和catalina.base这两个属性的作用

    catalina.home和catalina.base这两个属性仅在你需要安装多个Tomcat实例而不想安装多个软件备份的时候使用,这样能节省磁盘空间.以Tomcat6.0为例,其Tomcat目录结构 ...

  7. 使用explain分析sql语句

    sql语句优化 : sql语句的时间花在哪儿? 答: 等待时间 , 执行时间. 这两个时间并非孤立的, 如果单条语句执行的快了,对其他语句的锁定的也就少了. 所以,我们来分析如何降低执行时间. : s ...

  8. .NET操作Excel笔记

    如果你新建一个项目的话,首先要添加Microsoft.Office.Core 与Microsoft.Office.Interop.Exce这两个应用,然后就能很方便的操作了,示例代码(只实现了简单的读 ...

  9. spring 优点

    spring 的优点?1.降低了组件之间的耦合性 ,实现了软件各层之间的解耦 2.可以使用容易提供的众多服务,如事务管理,消息服务等 3.容器提供单例模式支持 4.容器提供了AOP技术,利用它很容易实 ...

  10. am335x mux配置

    /**************************************************************** * am335x mux配置 * * am335x的引脚复寄存器是C ...