Codeforces F. Cowmpany Cowmpensation
Description
有一棵树,现在要给每个节点赋一个在1到D之间的权值,问有多少种方案满足任意一个节点的权值都不大于其父亲的权值。
n<=3000,D<=1e9
题面
Solution
容易发现 \(f(D)\) 是一个 \(n\) 次多项式.
求出 \(f(1),f(2),...,f(n+1)\) 之后拉格朗日插值即可.
#include<bits/stdc++.h>
using namespace std;
const int N=3010,mod=1e9+7;
int n,m,head[N],to[N*2],nxt[N*2],fa[N],num=0,f[N][N],inv[N];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
inline void dfs(int x){
for(int i=1;i<=n+1;i++)f[x][i]=1;
for(int i=head[x],u;i;i=nxt[i]){
if((u=to[i])==fa[x])continue;
dfs(u);
int sum=0;
for(int j=1;j<=n+1;j++){
sum=(sum+f[u][j])%mod;
f[x][j]=1ll*f[x][j]*sum%mod;
}
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>m;
for(int i=2;i<=n;i++)cin>>fa[i],link(fa[i],i);
dfs(1);
for(int i=2;i<=n+1;i++)f[1][i]=(f[1][i]+f[1][i-1])%mod;
if(m<=n+1)cout<<f[1][m],exit(0);
inv[0]=inv[1]=1;
for(int i=2;i<=n;i++)inv[i]=(mod-1ll*(mod/i)*inv[mod%i]%mod)%mod;
int ans=0;
for(int i=1;i<=n+1;i++){
int t=1;
for(int j=1;j<=n+1;j++){
if(i==j)continue;
t=1ll*t*(m-j)%mod*(i>=j?inv[i-j]:-inv[j-i])%mod;
}
ans=(ans+1ll*t*f[1][i])%mod;
}
cout<<(ans+mod)%mod;
return 0;
}
Codeforces F. Cowmpany Cowmpensation的更多相关文章
- Codeforces 995F Cowmpany Cowmpensation - 组合数学
题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个棵$n$个点的有根树和整数$D$,给这$n$个点标号,要求每个节点的标号是正整数,且不超过父节点的标号,根节点的标号不得超过D. 很容 ...
- codeforces 955F Cowmpany Cowmpensation 树上DP+多项式插值
给一个树,每个点的权值为正整数,且不能超过自己的父节点,根节点的最高权值不超过D 问一共有多少种分配工资的方式? 题解: A immediate simple observation is that ...
- 【cf995】F. Cowmpany Cowmpensation(拉格朗日插值)
传送门 题意: 给出一颗树,每个结点有取值范围\([1,D]\). 现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值. 问有多少种取值方案. 思路: 手画一下发现,对于一颗大小为 ...
- F. Cowmpany Cowmpensation dp+拉格朗日插值
题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...
- 【CF995F】 Cowmpany Cowmpensation
CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...
- 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)
[CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...
- 【CF995F】Cowmpany Cowmpensation
[CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...
- [CF995F]Cowmpany Cowmpensation
codeforces description 一棵\(n\)个节点的树,给每个节点标一个\([1,m]\)之间的编号,要求儿子的权值不大于父亲权值.求方案数.\(n\le3000,n\le10^9\) ...
- [CF995F]Cowmpany Cowmpensation[树形dp+拉格朗日插值]
题意 给你一棵树,你要用不超过 \(D\) 的权值给每个节点赋值,保证一个点的权值不小于其子节点,问有多少种合法的方案. \(n\leq 3000, D\leq 10^9\) 分析 如果 \(D\) ...
随机推荐
- how to remote debug in vs 2013
first download the debugger tools "rtools_setup_x64" start C:\Program Files\Microsoft Visu ...
- 大公司怎么做Android代码混淆的?
3月17日,网易资深安全工程师钟亚平在安卓巴士全球开发者论坛上做了<安卓APP逆向与保护>的演讲.其中就谈到了关于代码混淆的问题.现摘取部分重点介绍如下: Java代码是非常容易反编译 ...
- 考取RHCE认证的历程,总结的经验
昨天去考试的,今天下午结果出来了,达到了我的预期.成功的获取了RHCE认证,以后我也是有证的人咯~,开个玩笑. 其实去年的时候我就曾经想要去考取的,我原来一直以为考取RHCE认证时考题都是英文的呢?因 ...
- P3357 最长k可重线段集问题 网络流
P3357 最长k可重线段集问题 题目描述 给定平面 x-O-yx−O−y 上 nn 个开线段组成的集合 II,和一个正整数 kk .试设计一个算法,从开线段集合 II 中选取出开线段集合 S\sub ...
- 利用jaxb实现xml和bean的相互转换
1.使用jar包生成xsd文件 java -jar trang.jar a.xml a.xsd xml格式 生成的xsd文件 2.使用xjc命令生成bean文件 xjc a.xsd 生成的相关bean ...
- [转] 打开 CMD 时自动执行命令
[转] 打开 CMD 时自动执行命令 问题描述 在Windows中打开一个command-prompt时,我正在寻找一种方法来执行一些控制台命令,特别是设置一些命令别名. 例如,当打开command- ...
- Leetcode 98 验证二叉搜索树 Python实现
给定一个二叉树,判断其是否是一个有效的二叉搜索树. 假设一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数. 节点的右子树只包含大于当前节点的数. 所有左子树和右子树自身必须也是二叉搜索 ...
- 编程开发之--java多线程学习总结(1)问题引入与概念叙述
1.经典问题,火车站售票,公共票源箱,多个窗口同时取箱中车票销售 package com.lfy.ThreadsSynchronize; /** * 解决办法分析:即我们不能同时让超过两个以上的线程进 ...
- Bluetooth Lowe Energy
BTL---------- // Wikipedia --------The first review paper to read when you counterred a new filed . ...
- Zynq-7000 FreeRTOS(一)系统移植配置
软件版本:VIvado HLx 2018.2 从FreeRTOS的官网中下载源代码: https://www.freertos.org/a00104.html 图:FreeRTOS的官网 上图中,点击 ...