Description:

    就是给你一个数,你可以把它自乘,也可以把他乘或除以任意一个造出过的数,问你最多经过多少次操作能变换成目标数

思路:这题真的不怎么会啊。n = 20000,每一层都有很多个扩展状态,裸宽搜会被T,启发式函数又设计不出来……

看了一个Vjudge上的代码才知道这题怎么写。

就是每一个状态是由最多两个数转化而来的,所以可以把两个数看做一个状态。

用一个多元组$node(x,y,g,h)$表示状态,$x, y$分别表示两个数中的较大数和较小数,然后$g$表示转换成当前的状态需要多少步,$h$表示大数$x$转换到大于等于目标状态至少还要多少步。

启发式函数就是当前步数+预期至少需要的步数,即$g+h$

再用一个哈希表把二元组$(x,y)$与转换到这个状态需要几步对应起来,这样可以完成去重。当然也可以用$map$实现,但按照poj的尿性,很可能TLE。。

然后加几个剪枝,排除以下多余状态:

1.如果$x > 2*n$,这个都能理解吧。

2.如果$x=y$,因为该状态和一个$x$的状态对未来的贡献是等价的,反正自乘自除也能达到一样的效果,不管$y$取什么数,都比$x$与$y$相等时更优。

3.如果$x > n$ 并且 $y = 0$,因为这样的话该状态永远达不到$x=n$。

4.如果$n $ $mod$ $gcd(x,y) != 0$,因为这样的状态不管怎么乘怎么除,也永远达不到$x=n$。

5.如果$(x,y)$已经在哈希表里了且对应的$g$更小,这个也都能理解吧。

这样的话就应该能过了。

然后款搜的时候要注意下,枚举出一个二元组能变换出来的所有可能的二元组,这个具体可以看代码。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int N = , SIZE = 1e6 + ;
int n;
struct node{
int x, y, g, h;
bool operator < (const node &a)const{
return g + h == a.g + a.h ? h > a.h : g + h > a.g + a.h;
}
};
struct Node{
int to, next, w;
};
struct hash_map{
int head[N], now;
Node a[SIZE];
bool insert(int sta, int w){
int x = sta % N;
for(int i = head[x]; i; i = a[i].next){
if(a[i].to == sta){
if(a[i].w <= w) return ;
a[i].w = w; return ;
}
}
a[++now] = {sta, head[x], w};
head[x] = now;
return ;
}
}dict;
priority_queue<node> heap;
node now;
int gcd(int a, int b){ return b ? gcd(b, a % b) : a;}
void che(int x, int y){
if(x < y) swap(x, y);
if(x > * n) return ;
if(x > n && y == ) return ;
if(x == y) return ;
if(n % gcd(x, y)) return;
if(!dict.insert(x * + y, now.g + )) return;
int h = , tx = x;
while(tx < n) h++, tx <<= ;
heap.push({x, y, now.g + , h});
}
void A_star(){
heap.push({, , , });
while(!heap.empty()){
now = heap.top(); heap.pop();
if(now.x == n || now.y == n){
printf("%d\n", now.g); break;
}
int a[] = {now.x, now.y};
for(int i = ; i < ; i++)
for(int j = i; j < ; j++)
for(int k = ; k < ; k++){
int b[] = {a[], a[]};
b[k] = a[i] + a[j];
che(b[], b[]);
}
che(now.x - now.y, now.y);
che(now.x, now.x - now.y);
}
}
int main(){
scanf("%d", &n);
A_star();
return ;
}

poj 1945 Power Hungry Cows A*的更多相关文章

  1. 『Power Hungry Cows A*启发式搜索』

    Power Hungry Cows(POJ 1945) Description FJ的奶牛想要快速计算整数P的幂 (1 <= P <=20,000),它们需要你的帮助.因为计算极大数的幂, ...

  2. [USACO2002][poj1945]Power Hungry Cows(启发式搜索)

    Power Hungry CowsTime Limit: 1000MS Memory Limit: 30000K Total Submissions: 4570 Accepted: 1120 Desc ...

  3. 【BFS】Power Hungry Cows

    Power Hungry Cows Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5522   Accepted: 1384 ...

  4. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  5. BZOJ1669: [Usaco2006 Oct]Hungry Cows饥饿的奶牛

    1669: [Usaco2006 Oct]Hungry Cows饥饿的奶牛 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 665  Solved: 419 ...

  6. BZOJ 1669: [Usaco2006 Oct]Hungry Cows饥饿的奶牛( LIS )

    裸的LIS ----------------------------------------------------------------- #include<cstdio> #incl ...

  7. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  8. POJ 2387 Til the Cows Come Home (图论,最短路径)

    POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...

  9. POJ.2387 Til the Cows Come Home (SPFA)

    POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...

随机推荐

  1. HTTP结构讲解——《HTTP权威指南》系列

    HTTP结构 第二部分的5章主要介绍了HTTP服务器,代理,缓存,网关和机器人应用程序,这些都是Web系统架构的构造模块. Web服务器 第五章 Web服务器会对HTTP请求进行处理并提供响应.术语& ...

  2. MongoDB 极简实践入门

    原作者StevenSLXie; 原链接(https://github.com/StevenSLXie/Tutorials-for-Web-Developers/blob/master/MongoDB% ...

  3. 【TCP_协议_socket接口】-jmeter

    1.ip 2.端口号 3.传入参数 4.告诉软件返回  最后以为是什么,不然就会报错 或者无限制的等待  查ascll 码表 启动接口的方法

  4. 禁用 Python GC,Instagram 性能提升10%

    通过关闭 Python 垃圾收集(GC)机制,该机制通过收集和释放未使用的数据来回收内存,Instagram 的运行效率提高了 10 %.是的,你没听错!通过禁用 GC,我们可以减少内存占用并提高 C ...

  5. PHP开发中常见的漏洞及防范

    PHP开发中常见的漏洞及防范 对于PHP的漏洞,目前常见的漏洞有五种.分别是Session文件漏洞.SQL注入漏洞.脚本命令执行漏洞.全局变量漏洞和文件漏洞.这里分别对这些漏洞进行简要的介绍和防范. ...

  6. 作业 20181023-11 Alpha发布

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2283 队名:可以低头,但没必要 组长:付佳 组员:张俊余 李文涛 孙赛佳 ...

  7. Scrum立会报告+燃尽图(Beta阶段第七次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2388 项目地址:https://coding.net/u/wuyy694 ...

  8. 【探路者】团队中的每一次感动——Alpha版

    我是[探路者]团队的leader翟宇豪.在软件工程课程开始时,当听说有团队作业这个任务时,我个人还是对leader这个角色很期待的.我很希望通过自己的努力,让我所在的团队变得更好,让组里的每一个成员在 ...

  9. 20172330 2017-2018-1 《Java程序设计》第十周学习总结

    20172330 2017-2018-1 <程序设计与数据结构>第十周学习总结 教材学习内容总结 本周的学习内容为集合 集合 对象具有定义良好的接口,从而成为一种实现集合的完善体制. 动态 ...

  10. CodeForces 479C Exams 贪心

    题目: C. Exams time limit per test 1 second memory limit per test 256 megabytes input standard input o ...