Description:

    就是给你一个数,你可以把它自乘,也可以把他乘或除以任意一个造出过的数,问你最多经过多少次操作能变换成目标数

思路:这题真的不怎么会啊。n = 20000,每一层都有很多个扩展状态,裸宽搜会被T,启发式函数又设计不出来……

看了一个Vjudge上的代码才知道这题怎么写。

就是每一个状态是由最多两个数转化而来的,所以可以把两个数看做一个状态。

用一个多元组$node(x,y,g,h)$表示状态,$x, y$分别表示两个数中的较大数和较小数,然后$g$表示转换成当前的状态需要多少步,$h$表示大数$x$转换到大于等于目标状态至少还要多少步。

启发式函数就是当前步数+预期至少需要的步数,即$g+h$

再用一个哈希表把二元组$(x,y)$与转换到这个状态需要几步对应起来,这样可以完成去重。当然也可以用$map$实现,但按照poj的尿性,很可能TLE。。

然后加几个剪枝,排除以下多余状态:

1.如果$x > 2*n$,这个都能理解吧。

2.如果$x=y$,因为该状态和一个$x$的状态对未来的贡献是等价的,反正自乘自除也能达到一样的效果,不管$y$取什么数,都比$x$与$y$相等时更优。

3.如果$x > n$ 并且 $y = 0$,因为这样的话该状态永远达不到$x=n$。

4.如果$n $ $mod$ $gcd(x,y) != 0$,因为这样的状态不管怎么乘怎么除,也永远达不到$x=n$。

5.如果$(x,y)$已经在哈希表里了且对应的$g$更小,这个也都能理解吧。

这样的话就应该能过了。

然后款搜的时候要注意下,枚举出一个二元组能变换出来的所有可能的二元组,这个具体可以看代码。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int N = , SIZE = 1e6 + ;
int n;
struct node{
int x, y, g, h;
bool operator < (const node &a)const{
return g + h == a.g + a.h ? h > a.h : g + h > a.g + a.h;
}
};
struct Node{
int to, next, w;
};
struct hash_map{
int head[N], now;
Node a[SIZE];
bool insert(int sta, int w){
int x = sta % N;
for(int i = head[x]; i; i = a[i].next){
if(a[i].to == sta){
if(a[i].w <= w) return ;
a[i].w = w; return ;
}
}
a[++now] = {sta, head[x], w};
head[x] = now;
return ;
}
}dict;
priority_queue<node> heap;
node now;
int gcd(int a, int b){ return b ? gcd(b, a % b) : a;}
void che(int x, int y){
if(x < y) swap(x, y);
if(x > * n) return ;
if(x > n && y == ) return ;
if(x == y) return ;
if(n % gcd(x, y)) return;
if(!dict.insert(x * + y, now.g + )) return;
int h = , tx = x;
while(tx < n) h++, tx <<= ;
heap.push({x, y, now.g + , h});
}
void A_star(){
heap.push({, , , });
while(!heap.empty()){
now = heap.top(); heap.pop();
if(now.x == n || now.y == n){
printf("%d\n", now.g); break;
}
int a[] = {now.x, now.y};
for(int i = ; i < ; i++)
for(int j = i; j < ; j++)
for(int k = ; k < ; k++){
int b[] = {a[], a[]};
b[k] = a[i] + a[j];
che(b[], b[]);
}
che(now.x - now.y, now.y);
che(now.x, now.x - now.y);
}
}
int main(){
scanf("%d", &n);
A_star();
return ;
}

poj 1945 Power Hungry Cows A*的更多相关文章

  1. 『Power Hungry Cows A*启发式搜索』

    Power Hungry Cows(POJ 1945) Description FJ的奶牛想要快速计算整数P的幂 (1 <= P <=20,000),它们需要你的帮助.因为计算极大数的幂, ...

  2. [USACO2002][poj1945]Power Hungry Cows(启发式搜索)

    Power Hungry CowsTime Limit: 1000MS Memory Limit: 30000K Total Submissions: 4570 Accepted: 1120 Desc ...

  3. 【BFS】Power Hungry Cows

    Power Hungry Cows Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5522   Accepted: 1384 ...

  4. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  5. BZOJ1669: [Usaco2006 Oct]Hungry Cows饥饿的奶牛

    1669: [Usaco2006 Oct]Hungry Cows饥饿的奶牛 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 665  Solved: 419 ...

  6. BZOJ 1669: [Usaco2006 Oct]Hungry Cows饥饿的奶牛( LIS )

    裸的LIS ----------------------------------------------------------------- #include<cstdio> #incl ...

  7. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  8. POJ 2387 Til the Cows Come Home (图论,最短路径)

    POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...

  9. POJ.2387 Til the Cows Come Home (SPFA)

    POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...

随机推荐

  1. Python环境搭建和pycharm安装

    Python环境搭建和pycharm安装 本人安装环境为Windows10系统,下载的Python版本为3.4社区版本,可参考 1.下载Python3.4版本 官网:https://www.pytho ...

  2. HWI的安装

    一.安装的过程 hwi的安装过程: 1.解压src源码包:tar -zvxf apache-hive-1.2.2-src.tar.gz 2.进到HWI目录下:cd /home/bigdata/apac ...

  3. vim—多行注释、取消多行注释

    多行注释 命令模式: (1)将光标放在要注释的行首,按下组合键ctrl + v ,然后按上下键选取要注释的行. (2)按下大i键,然后插入要注释的符号 # (3)按ESC键,退出后,就会全部注释. 取 ...

  4. PytorchZerotoAll学习笔记(二)--梯度下降之手动求导

    梯度下降算法:    待优化的损失值为 loss,那么我们希望预测的值能够很接近真实的值 y_pred ≍ y_label      我们的样本有n个,那么损失值可以由一下公式计算得出: 要使得los ...

  5. 在intelij IDEA中添加对jetBrick文件的识别

    在intelij IDEA中添加对jetBrick文件的识别 打开setting, 搜索File Types, 在Recognized File Types窗口找到Java Server Page或者 ...

  6. 20181016-4 Alpha阶段第1周/共2周 Scrum立会报告+燃尽图 03

    此作业链接地址见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2248 Scrum master:王硕 一.小组介绍 组长:王一可 组员 ...

  7. ASP.NET MVC5 学习系列之视图

    一.视图约定 当创建一个项目模版时,可以注意到,项目以一种非常具体的方式包含了一个结构化的Views目录.在每一个控制器的View文件夹中,每一个操作方法都有一个同名的视图文件与其对应.(约定大于配置 ...

  8. 在windows和unbuntu上安装octave

    windows安装octave 安装wiki Octave ftp库 从上述的库中可以找到对应的版本的octave的exe安装程序,或者是zip等的压缩包,建议直接下载对应系统的exe执行文件.安装. ...

  9. centos 6 编译emacs-24.5

    yum install `yum deplist emacs | grep provider | awk -F: '{print $2}' | awk '{print $1}' | xargs` yu ...

  10. 1014 我的C语言文法定义与C程序推导过程

    程序> -> <外部声明> | <程序> <外部声明> <外部声明> -> <函数定义> | <声明> < ...