D. Relatively Prime Graph
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)∈E(v,u)∈E  GCD(v,u)=1GCD(v,u)=1 (the greatest common divisor of vv and uu is 11). If there is no edge between some pair of vertices vv and uu then the value of GCD(v,u)GCD(v,u) doesn't matter. The vertices are numbered from 11 to |V||V|.

Construct a relatively prime graph with nn vertices and mm edges such that it is connected and it contains neither self-loops nor multiple edges.

If there exists no valid graph with the given number of vertices and edges then output "Impossible".

If there are multiple answers then print any of them.

Input

The only line contains two integers nn and mm (1≤n,m≤1051≤n,m≤105) — the number of vertices and the number of edges.

Output

If there exists no valid graph with the given number of vertices and edges then output "Impossible".

Otherwise print the answer in the following format:

The first line should contain the word "Possible".

The ii-th of the next mm lines should contain the ii-th edge (vi,ui)(vi,ui) of the resulting graph (1≤vi,ui≤n,vi≠ui1≤vi,ui≤n,vi≠ui). For each pair (v,u)(v,u)there can be no more pairs (v,u)(v,u) or (u,v)(u,v). The vertices are numbered from 11 to nn.

If there are multiple answers then print any of them.

Examples
input
Copy
5 6
output
Copy
Possible
2 5
3 2
5 1
3 4
4 1
5 4
input
Copy
6 12
output
Copy
Impossible
Note

Here is the representation of the graph from the first example:


题意:有n个点,编号为1~n。有m条边,要求每条边的顶点的最大公约数为1(并且没有平行边和环),如果这些点和边能组成无向的连通图,并且边和顶点都没有剩余,则输出Possible,并输出可能的边(用顶点表示),否则输出Impossible

AC代码:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define ll long long
#define ms(a) memset(a,0,sizeof(a))
#define pi acos(-1.0)
#define INF 0x3f3f3f3f
const double E=exp(1);
const int maxn=1e6+10;
using namespace std;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll vis[maxn][2];
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
ll n,m;
cin>>n>>m;
ms(vis);
if(m<n-1)//只有两个点,一条边
cout<<"Impossible"<<endl;
else
{
ll k=0;
for(ll i=1;i<n;i++)
for(ll j=i+1;j<=n;j++)
{
if(gcd(i,j)==1)//i和j的最大公约数为1,说明两点可以相连
{
vis[k][0]=i;
vis[k][1]=j;
k++;//i,j看做边的两点,并更新k的值
if(k>m)
break;//这个停止不能少!!!要不然数太多,数组存不下!!
}
}
if(k<m)
cout<<"Impossible"<<endl;
else
{
cout<<"Possible"<<endl;
for(int i=0;i<m;i++)
{
cout<<vis[i][0]<<" "<<vis[i][1]<<endl;
}
}
}
return 0;
}

Codeforces 1009D:Relatively Prime Graph的更多相关文章

  1. 【Codeforces 1009D】Relatively Prime Graph

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 1000以内就有非常多组互质的数了(超过1e5) 所以,直接暴力就行...很快就找完了 (另外一开始头n-1条边找1和2,3...n就好 [代 ...

  2. Codeforces Global Round 4 Prime Graph CodeForces - 1178D (构造,结论)

    Every person likes prime numbers. Alice is a person, thus she also shares the love for them. Bob wan ...

  3. codeforces 715B:Complete The Graph

    Description ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m ...

  4. Codeforces 385C Bear and Prime Numbers

    题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...

  5. 译:Local Spectral Graph Convolution for Point Set Feature Learning-用于点集特征学习的局部谱图卷积

    标题:Local Spectral Graph Convolution for Point Set Feature Learning 作者:Chu Wang, Babak Samari, Kaleem ...

  6. Codeforces 385C Bear and Prime Numbers(素数预处理)

    Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...

  7. 算法:图(Graph)的遍历、最小生成树和拓扑排序

    背景 不同的数据结构有不同的用途,像:数组.链表.队列.栈多数是用来做为基本的工具使用,二叉树多用来作为已排序元素列表的存储,B 树用在存储中,本文介绍的 Graph 多数是为了解决现实问题(说到底, ...

  8. D. Relatively Prime Graph

    Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)∈E( ...

  9. Relatively Prime Graph CF1009D 暴力 思维

    Relatively Prime Graph time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

随机推荐

  1. python基础之if语句

    python之if语句 通用格式 if <test1>: <do something> elif: <do something> else: <do some ...

  2. 安装完C++builder6.0启动的时候总是出现无法将'C:\Program Files\Borland\CBuilder6\Bin\bcb.$$$'重命名为bcb.dro

    :兼容性问题  运行前右键属性“兼容性”-尝试不同的兼容性.比如“windows 8”

  3. 【运维技术】VM虚拟机上使用centos7安装docker启动gogs服务教程【含B站视频教程】

    VM虚拟机上使用centos7安装docker启动gogs服务视频教程 BiliBili视频教程链接飞机票,点我 使用VMware Workstation安装Centos7 MinMal系统 第一步: ...

  4. NET Framework 4.0无法安装!

    win7旗舰版无法安装CAD2012,安装NET Framework 4.0的时候就出现错误,安装NET Framework 4.0单独版也无法安装出现错误. 解决方法: 1.点击电脑桌面右下角的“开 ...

  5. POJ 3468 A Simple Problem with Integers(线段树:区间更新)

    http://poj.org/problem?id=3468 题意: 给出一串数,每次在一个区间内增加c,查询[a,b]时输出a.b之间的总和. 思路: 总结一下懒惰标记的用法吧. 比如要对一个区间范 ...

  6. python 删除字典元素

    myDict = {,,,} print(myDict) if 'a' in myDict: del myDict['a'] print(myDict)

  7. 插入10W数据的两个程序比较

    程序1 添加10W数据 $count = 0; for ($i = 1;$i <= 100000 ;$i++) { $add_data = [ 'id' => $i, 'username' ...

  8. vue之双绑实现

    // html <body> <div id="app"> <input type="text" v-model="nu ...

  9. Rspec: everyday-rspec实操: 第9章 快速编写测试,编写快速的测试。

    Make it work, make it right, make it fast. 测试运行的时间.应用和测试组件的增长,速度会越来越慢,目标是保持代码的readable, maintainable ...

  10. sql语句中处理金额,把分换算成元

    问题,sql语句中直接将金额/100返回的结果会有多个小数位. as value from account as acc left join conCategory as cate on acc.ca ...