Codeforces 1009D:Relatively Prime Graph
2 seconds
256 megabytes
standard input
standard output
Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)∈E(v,u)∈E GCD(v,u)=1GCD(v,u)=1 (the greatest common divisor of vv and uu is 11). If there is no edge between some pair of vertices vv and uu then the value of GCD(v,u)GCD(v,u) doesn't matter. The vertices are numbered from 11 to |V||V|.
Construct a relatively prime graph with nn vertices and mm edges such that it is connected and it contains neither self-loops nor multiple edges.
If there exists no valid graph with the given number of vertices and edges then output "Impossible".
If there are multiple answers then print any of them.
The only line contains two integers nn and mm (1≤n,m≤1051≤n,m≤105) — the number of vertices and the number of edges.
If there exists no valid graph with the given number of vertices and edges then output "Impossible".
Otherwise print the answer in the following format:
The first line should contain the word "Possible".
The ii-th of the next mm lines should contain the ii-th edge (vi,ui)(vi,ui) of the resulting graph (1≤vi,ui≤n,vi≠ui1≤vi,ui≤n,vi≠ui). For each pair (v,u)(v,u)there can be no more pairs (v,u)(v,u) or (u,v)(u,v). The vertices are numbered from 11 to nn.
If there are multiple answers then print any of them.
5 6
Possible
2 5
3 2
5 1
3 4
4 1
5 4
6 12
Impossible
Here is the representation of the graph from the first example:
题意:有n个点,编号为1~n。有m条边,要求每条边的顶点的最大公约数为1(并且没有平行边和环),如果这些点和边能组成无向的连通图,并且边和顶点都没有剩余,则输出Possible,并输出可能的边(用顶点表示),否则输出Impossible
AC代码:
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define ll long long
#define ms(a) memset(a,0,sizeof(a))
#define pi acos(-1.0)
#define INF 0x3f3f3f3f
const double E=exp(1);
const int maxn=1e6+10;
using namespace std;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll vis[maxn][2];
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
ll n,m;
cin>>n>>m;
ms(vis);
if(m<n-1)//只有两个点,一条边
cout<<"Impossible"<<endl;
else
{
ll k=0;
for(ll i=1;i<n;i++)
for(ll j=i+1;j<=n;j++)
{
if(gcd(i,j)==1)//i和j的最大公约数为1,说明两点可以相连
{
vis[k][0]=i;
vis[k][1]=j;
k++;//i,j看做边的两点,并更新k的值
if(k>m)
break;//这个停止不能少!!!要不然数太多,数组存不下!!
}
}
if(k<m)
cout<<"Impossible"<<endl;
else
{
cout<<"Possible"<<endl;
for(int i=0;i<m;i++)
{
cout<<vis[i][0]<<" "<<vis[i][1]<<endl;
}
}
}
return 0;
}
Codeforces 1009D:Relatively Prime Graph的更多相关文章
- 【Codeforces 1009D】Relatively Prime Graph
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 1000以内就有非常多组互质的数了(超过1e5) 所以,直接暴力就行...很快就找完了 (另外一开始头n-1条边找1和2,3...n就好 [代 ...
- Codeforces Global Round 4 Prime Graph CodeForces - 1178D (构造,结论)
Every person likes prime numbers. Alice is a person, thus she also shares the love for them. Bob wan ...
- codeforces 715B:Complete The Graph
Description ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m ...
- Codeforces 385C Bear and Prime Numbers
题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...
- 译:Local Spectral Graph Convolution for Point Set Feature Learning-用于点集特征学习的局部谱图卷积
标题:Local Spectral Graph Convolution for Point Set Feature Learning 作者:Chu Wang, Babak Samari, Kaleem ...
- Codeforces 385C Bear and Prime Numbers(素数预处理)
Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...
- 算法:图(Graph)的遍历、最小生成树和拓扑排序
背景 不同的数据结构有不同的用途,像:数组.链表.队列.栈多数是用来做为基本的工具使用,二叉树多用来作为已排序元素列表的存储,B 树用在存储中,本文介绍的 Graph 多数是为了解决现实问题(说到底, ...
- D. Relatively Prime Graph
Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)∈E( ...
- Relatively Prime Graph CF1009D 暴力 思维
Relatively Prime Graph time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
随机推荐
- cocos代码研究(17)Widget子类RadioButtonGroup学习笔记
理论基础 RadioButtonGroup可以把指定的单选按钮组织起来, 形成一个组, 使它们彼此交互. 在一个RadioButtonGroup, 有且只有一个或者没有RadioButton可以处于被 ...
- python webdriver grid多节点运行webdriver程序
grid整理: 机制 Hub机器和节点机器上要装jdk和jar包 A机器:hub 中控:用来监控所有节点机的状态 启动命令: java -jar selenium-server-standalone ...
- HDU 6354 Everything Has Changed(余弦定理)多校题解
题意:源点处有个圆,然后给你m个圆(保证互不相交.内含),如果源点圆和这些原相交了,就剪掉相交的部分,问你最后周长(最外面那部分的长度). 思路:分类讨论,只有内切和相交会变化周长,然后乱搞就行了.题 ...
- 【postman】谷歌postman插件的基本选项含义
1.form-data: 就是http请求中的multipart/form-data,它会将表单的数据处理为一条消息,以标签为单元,用分隔符分开.既可以上传键值对,也可以上传文件.当上传的字段是文件 ...
- BZOJ 1269 【AHOI2006】 文本编辑器
题目链接:文本编辑器 这道题没啥好说的,直接上\(Splay\)就行了,板子题…… 但是我某个地方忘了下放标记导致调了一晚上 听说有个东西叫\(rope\)可以直接过?然而我并不会 保存一发板子: # ...
- Intel Caffe 与原生Caffe
1. 首先安装好docker,拉取intel caffe image: $ docker pull bvlc/caffe:intel 试着运行: $ docker run -it bvlc/caff ...
- Python——列表表达式
https://www.cnblogs.com/xuyuanyuan123/p/6718403.html
- ajax方法携带授权标识
$.ajax({ type: "post", url: "/api/login", data: { username: getusername, passwor ...
- ActiveSupport::TimeZone; 功能:用户自行选择时区。
TimeZone类作为一个包装器,服务一个TZinfo::Timezone 实例. 用途: 134个时区的检索. 使用简化的英文单词来取回和显示时区:如"Beijing" => ...
- 前端jsp页面script引入url项目名使用${appName}
<script src="/${appName}/commons/jslib/CommonValue.js"></script> 新建一个com.autum ...