LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485
\( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i-k)] \)
然后就是套路即可。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
ll rdn()
{
ll ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
const int N=,mod=;
int upt(ll x,int mod){x%=mod;if(x<)x+=mod;return x;}
int pw(int x,ll k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;}
int T,s,a[N],iv4,w[N];ll n;
void init()
{
iv4=pw(,mod-);
w[]=;w[]=pw(,(mod-)/);
w[]=(ll)w[]*w[]%mod; w[]=(ll)w[]*w[]%mod;
}
int main()
{
T=rdn();init();
while(T--)
{
n=rdn();s=rdn();for(int i=;i<;i++)a[i]=rdn();
int ans=;
for(int k=;k<;k++)
{
int ret=;
for(int j=;j<;j++)ret=(ret+(ll)w[upt(j*(n-k),)]*pw(s+w[upt(-j,)],n))%mod;
ans=(ans+(ll)a[k]*ret)%mod;
}
ans=(ll)ans*iv4%mod; printf("%d\n",ans);
}
return ;
}
LOJ 6485 LJJ 学二项式定理——单位根反演的更多相关文章
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
- LOJ #6485 LJJ 学二项式定理
QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次 ...
- loj #6485. LJJ 学二项式定理 (模板qwq)
$ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...
- LOJ 6485 LJJ学多项式
前言 蒟蒻代码惨遭卡常,根本跑不过 前置芝士--单位根反演 单位根有这样的性质: \[ \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\rig ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- LOJ6485 LJJ 学二项式定理 解题报告
LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...
随机推荐
- 如何运行.ipynb文件
首先cmd下面输入: pip install jupyter notebook ,安装慢的改下pip的源为国内的源 然后cmd中输入: jupyter notebook就会弹出一个页面 先upload ...
- ESXi上的固态硬盘识别为非SSD
启动ESXi的SSH服务 通过SSH远程连接ESXi主机 输入如下命令 # esxcli storage nmp device list #列出储存清单(SSD设备的“device na ...
- kali_install_complete_no_sound
参考:http://tieba.baidu.com/p/4343219808 用pulseaudio --start会看到一些信息,提示类似root用户之类的 我是用下面这个方法搞定的 systemc ...
- git如何自动打补丁
答:git am --reject jello.patch (如果打补丁失败,会自动生成rej文件)
- 【spring-boot】 springboot整合quartz实现定时任务
在做项目时有时候会有定时器任务的功能,比如某某时间应该做什么,多少秒应该怎么样之类的. spring支持多种定时任务的实现.我们来介绍下使用spring的定时器和使用quartz定时器 1.我们使用s ...
- 使用4K显示器遇到的坑
第一大坑:鼠标移动变慢,有强烈的滞后感 让人怀疑是不是系统因为要支持4K屏而变慢了,或者是鼠标坏了!甚至猜想是不是4K显示器的屏幕,因为分辨率太高,导致鼠标需要移动的点太多,因而耗时,产生了滞后感. ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- tfn2k工具使用介绍
主要介绍tfn2k(Linux),因为它最著名嘛!主要分为使用说明 然后在说安装所以有点长 (注意:有的人拿VPS来做DDOS·问题是有的人发现了会关闭你VPS的·除非你认识他或者你自己有服务器而不是 ...
- python 浮点数转分数
from fractions import Fraction value = 4.2 print(Fraction(value).limit_denominator())
- Creating SSL keys, CSRs, self-signed certificates, and .pem files.
What is the whole darned process? Well that’s a good question. For my purposes, this is what I need ...