DCT(Discrete Consine Transform),又叫离散余弦变换,它的第二种类型,经常用于信号和图像数据的压缩。经过DCT变换后的数据能量非常集中,一般只有左上角的数值是非零的,也就是能量都集中在离散余弦变换后的直流和低频部分。

1. 一维DCT变换

一维DCT变换共有8中,其中最实用的是第二种形式,公式如下:

\[F(u)=c(u)\sum_{i=0}^{N-1}f(i)\cos{[\frac{(i+0.5)\pi}{N}u]}
\]

\[c(u)=\begin{cases}\sqrt{\frac{1}{N}}, & u=0 \\ \sqrt{\frac{2}{N}}, & u\neq0\end{cases}
\]

其中\(c(u)\)就是加上去一个系数,为了能使DCT变换变成正交矩阵。\(N\)是\(f(x)\)的总数。

2. 二维DCT变换

二维DCT变换是在一维的基础上再进行一次DCT变换,公式如下:

\[F(u,v)=c(u)c(v)\sum_{i=0}^{N-1}\sum_{i=0}^{N-1}f(i,j)\cos{[\frac{(i+0.5)\pi}{N}u]}\cos{[\frac{(i+0.5)\pi}{N}v]}
\]

这里只讨论了两个\(N\)相等的情况,也就是数据是方阵的形式,在实际应用中对不是方阵的数据都是先补齐再进行变换的。

写成矩阵形式:

\[\mathrm{F}=\mathrm{A}f\mathrm{A}^\mathrm{T}
\]

\[\mathrm{A}(i,j)=c(i)\cos{[\frac{(j+0.5)\pi}{N}i]}
\]

用MATLAB进行验证:

clear;
clc; X = round(rand(4) * 100); % 生成随机数据
A = zeros(4); % 变换矩阵 for i = 0 : 3
if i == 0
c = sqrt(1/4);
else
c = sqrt(2/4);
end
for j = 0 : 3
A(i + 1, j + 1) = c * cos(pi * (j + 0.5) * i / 4);
end
end Y = A * X * A'; % DCT变换
YY = dct2(X); % 使用MATALAB函数进行DCT变换 disp('使用公式进行DCT变换:')
disp(Y)
disp('使用MATLAB函数DCT变换:')
disp(YY)

输入结果:

使用公式进行DCT变换:
204.7500 -2.5322 27.2500 24.5909
32.1461 3.7448 -20.9667 24.5450
54.2500 -1.9287 -2.2500 -24.9079
12.9327 -40.4550 -25.1401 9.7552 使用MATLAB函数DCT变换:
204.7500 -2.5322 27.2500 24.5909
32.1461 3.7448 -20.9667 24.5450
54.2500 -1.9287 -2.2500 -24.9079
12.9327 -40.4550 -25.1401 9.7552

3. 二维DCT逆变换

DCT逆变换的公式如下:

\[f(i,j)=\sum_{u=0}^{N-1}\sum_{v=0}^{N-1}c(u)c(v)F(u,v)\cos[\frac{(i+0.5)\pi}{N}u]\cos[\frac{(j+0.5)\pi}{N}v]
\]

\[c(u)=\begin{cases}\sqrt{\frac{1}{N}},&u=0\\\sqrt{\frac{2}{N},}&u\neq0\end{cases}
\]

矩阵形式的变换公式推到如下:

\[\begin{align}&\quad\mathrm{F}=\mathrm{A}f\mathrm{A}^{\mathrm{T}}\\&\because{\mathrm{A}^{-1}=\mathrm{A}^{\mathrm{T}}}\\&\therefore{f=\mathrm{A}^{-1}\mathrm{F}(\mathrm{A}^{T})^{-1}}=\mathrm{A}^{T}\mathrm{F}\mathrm{A}\end{align}
\]

用MATALAB进行验证:

clear;
clc; X = round(rand(4) * 100); % 生成随机数据
A = zeros(4); % 变换矩阵 for i = 0 : 3
if i == 0
c = sqrt(1/4);
else
c = sqrt(2/4);
end
for j = 0 : 3
A(i + 1, j + 1) = c * cos(pi * (j + 0.5) * i / 4);
end
end Y = A * X * A'; % DCT变换
XX = A'* Y* A; % DCT逆变换 disp('原始矩阵:')
disp(X)
disp('使用公式进行DCT逆变换:')
disp(XX)
disp('使用MATLAB函数DCT逆变换:')
disp(idct2(Y))

输出结果:

原始矩阵:
28 69 44 19
5 32 38 49
10 95 77 45
82 3 80 65 使用公式进行DCT逆变换:
28.0000 69.0000 44.0000 19.0000
5.0000 32.0000 38.0000 49.0000
10.0000 95.0000 77.0000 45.0000
82.0000 3.0000 80.0000 65.0000 使用MATLAB函数DCT逆变换:
28.0000 69.0000 44.0000 19.0000
5.0000 32.0000 38.0000 49.0000
10.0000 95.0000 77.0000 45.0000
82.0000 3.0000 80.0000 65.0000

4. DCT变换的可分离性

DCT变换是可分离的变换。通常根据可分离性,二维DCT可用两次一维DCT变换来完成,即

\[\begin{align}f(x,y)&\to F_{行}[f(x,y)]=F(x,v)\\&\to F(x,v)^{\mathrm{T}}\to F_{列}[f(x,v)^{\mathrm{T}}]=F(u,v)^{\mathrm{T}}\\&\to F(u,v)\end{align}
\]

先进行行变换,再进行列变换和先进行列变换,再进行行变换的结果是一样的。

Python scipy模块中的fftpack.dct()函数提供了一维DCT变换功能(默认是沿着矩阵的最后一个axis进行变换),下面使用Python代码进行验证。

import numpy as np
from scipy import fftpack def dct(mat2x2):
return fftpack.dct(fftpack.dct(mat2x2, norm='ortho').T, norm='ortho').T def dct2(mat2x2):
return fftpack.dct(fftpack.dct(mat2x2.T, norm='ortho').T, norm='ortho') if __name__ == '__main__':
sample = np.random.rand(3, 3)
print('先进行行变换,再进行列变换:')
print(dct(sample))
print('先进行列变换,再进行行变换:')
print(dct2(sample))

输出结果:

先进行行变换,再进行列变换:
[[ 1.3763706 -0.42355794 0.03903157]
[-0.18270004 0.06454257 -0.05273778]
[ 0.16962548 0.22247218 -0.06953193]]
先进行列变换,再进行行变换:
[[ 1.3763706 -0.42355794 0.03903157]
[-0.18270004 0.06454257 -0.05273778]
[ 0.16962548 0.22247218 -0.06953193]]

5. DCT用于图像压缩

对于二维灰度图像进行DCT变换,就能得到图像的频谱图:低阶(变化幅度小)的部分反映在DCT的左上方,高阶(变化幅度大)的部分反映在DCT的右下方。由于人眼对高阶部分不敏感,依靠低阶部分就能基本识别出图像内容,所以JPEG进行压缩的时候,基本上只存储DCT变换后的左上部分,而右下部分则直接丢弃。

MATALAB代码验证:

clear;
clc; im = imread('https://upload.wikimedia.org/wikipedia/en/2/24/Lenna.png'); % 读入图像
figure(),
subplot(221),
imshow(im);
title('原始彩色图像'); grayim = rgb2gray(im);
dctim = dct2(grayim);
subplot(222),
% imshow(I,[]) displays the grayscale image I scaling the display based on the range of pixel values in I.
imshow(log(abs(dctim)), []),
title('DCT变换图像'); idctim = idct2(dctim);
subplot(223),
imshow(idctim, [])
title('DCT逆变换图像'); subplot(224),
imshow(grayim)
title('原始灰度图像');

运行结果:

![运行结果图片](

参考文献

[1] 二维DCT变换:https://wuyuans.com/2012/11/dct2

[2] 余弦离散变换原理及应用:http://blog.csdn.net/shenziheng1/article/details/52965104

[3] MATLAB分析图像的离散余弦变换(DCT):http://blog.csdn.net/u013354805/article/details/52259471

[4] 图像DCT变换:https://feichashao.com/image_dct/

二维DCT变换的更多相关文章

  1. 二维DCT变换 | Python实现

    引言 最近专业课在学信息隐藏与数字水印,上到了变换域隐藏技术,提到了其中的DCT变换,遂布置了一个巨烦人的作业,让手动给两个\(8\times8\)的矩阵做二维DCT变换,在苦逼的算了一小时后,我决定 ...

  2. DCT变换、DCT反变换、分块DCT变换

    一.引言 DCT变换的全称是离散余弦变换(Discrete Cosine Transform),主要用于将数据或图像的压缩,能够将空域的信号转换到频域上,具有良好的去相关性的性能.DCT变换本身是无损 ...

  3. UWP开发-二维变换以及三维变换

    在开发中,由于某些需求,我们可能需要做一些平移,缩放,旋转甚至三维变换,所以我来讲讲在UWP中这些变换的实现方法. 一. 二维变换: UIElement.RenderTransform a.Trans ...

  4. 【opengl】OpenGL中三维物体显示在二维屏幕上显示的变换过程

    转自:http://blog.sina.com.cn/s/blog_957b9fdb0100zesv.html 为了说明在三维物体到二维图象之间,需要经过什么样的变换,我们引入了相机(Camera)模 ...

  5. SSE图像算法优化系列二十一:基于DCT变换图像去噪算法的进一步优化(100W像素30ms)。

    在优化IPOL网站中基于DCT(离散余弦变换)的图像去噪算法(附源代码) 一文中,我们曾经优化过基于DCT变换的图像去噪算法,在那文所提供的Demo中,处理一副1000*1000左右的灰度噪音图像耗时 ...

  6. C++实现离散余弦变换(参数为二维指针)

    C++实现离散余弦变换(参数为二维指针) 写在前面 到目前为止已经阅读了相当一部分的网格水印等方面的论文了,但是论文的实现进度还没有更上,这个月准备挑选一些较为经典的论文,将其中的算法实现.在实现论文 ...

  7. 二维离散余弦变换(2D-DCT)

    图像处理中常用的正交变换除了傅里叶变换以外,还有一些其它常用的正交变换,其中离散余弦变换DCT就是一种,这是JPEG图像压缩算法里的核心算法,这里我们也主要讲解JPEG压缩算法里所使用8*8矩阵的二维 ...

  8. 通过Matrix进行二维图形仿射变换

    Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的"平直性"和"平行性".仿射变换可以通过一系列的原子变换的复合来 ...

  9. openGL实现二维图形和三维图形

    openGL是一个强大的底层图形库,其命令最初的时候使用C语言实现的.openGL定义了一个图形程序接口,常用于制作处理三维图像,功能强大,调用方便,在图像处理十分受欢迎. 实现图形主要使用的是ope ...

随机推荐

  1. SSM项目引入文件失败

    <mvc:resources mapping="/styles/**" location="/css/"/> <mvc:resources m ...

  2. Cache Buffer 区别

    Cache 一般位于CPU中, 分为 L1 Cache, L2 Cache, 是一种读的操作,把CPU刚用过的/循环使用的数据存储起来,当CPU再次使用时,可以直接从Cache存储器中调用,减少了等待 ...

  3. 安装Win7时删除系统保留的100M隐藏分区

    原创文章,作者:lenbs,如若转载,请注明出处:https://www.smbinn.com/delwindows7100m.html 安装windows7新建磁盘分区时系统会自动创建100M的保留 ...

  4. vue 复习(2)v-bind的应用 v-bind:classv-binf:style

    dasdclass与style绑定v-bind 1. 绑定HTML Class 对象语法 有些时候我们想动态的切换class的类名.在原生的js或jq中我们就要通过事件来动态的改变class类名,但在 ...

  5. iOS背景音乐不自动播放

    iOS 内置浏览器safari不允许自动播放音乐.我们需要通过WeixinJSBridgeReady()函数实现自动触发 document.addEventListener("WeixinJ ...

  6. JavaScript变量类型检测总结

    JavaScript中的变量类型: 基本类型值:Undefined,Null,Boolean,Number和String. 按值访问(可直接操作保存在变量中的变量值): 复制规则:当复制基本类型值时: ...

  7. S/4 HANA中发票输出切换回NAST

    在S/4 HANA中,新的输出管理Output Management叫做SAP S/4HANA output control(输出控制),是基于BRF+的,而不是原来基于NAST的.关于S4新的输出控 ...

  8. crontab基础笔记 思维导图版

    直接上图吧----------------------------------------------------------------------------------------------- ...

  9. Hbase(1)-MySQL海量数据存储的启发

    宽表拆分 有一张user表,记录了用户的信息,,如果表中的列有很多,就称之为宽表,为了提升效率,会进行垂直拆分 拆分后 将用户的信息分为基本信息和其他信息,页面一开打就需要展示的信息为基本信息,其他信 ...

  10. 课程 python 文件操作复习

    # 文件处理 # 打开文件 #open('路径','打开方式','指定编码方式') # 打开方式 r w a r+ w+ a+ b #r+ 打开文件直接写 和读完再写 # 编码方式 —— utf-8 ...