4540: [Hnoi2016]序列

https://www.lydsy.com/JudgeOnline/problem.php?id=4540

分析:

  莫队+RMQ+单调栈。

  考虑加入一个点后,区间发生了什么变化。[l,r]->[l,r+1],增加了r-l+1段区间。设[l,r+1]的最小值在p,那么左端点在l~p-1的区间,答案就是a[p]了,p右边同样还存在许多最小值,影响了一段的区间。

  每个点影响的区间是这样的,p的贡献就是a[p]*(p-l+1),剩余的贡献,可以记录每个位置向左的前缀和,那么求出p+1~R+1的贡献就行了(L可能不是最小的点,不能直接算L~R+1,只能从p开始算,p剩余的部分,单独算了)。同样的向右的也是这样求出。用单调栈求出每个位置左边第一个比它大的L[i],然后sl[i] = sl[L[i]] + a[i] * (i - L[i])。快速求出最小的值得位置的过程可以用RMQ维护。

  于是就可以开心的用莫队了。

代码:

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; int a[N], sk[N], bel[N], L[N], R[N], f[N][], Log[N];
LL ans[N], sl[N], sr[N], Answer;
struct Que{
int l, r, id;
bool operator < (const Que &A) const {
return bel[l] == bel[A.l] ? r < A.r : bel[l] < bel[A.l];
}
}q[N]; inline int Min(int i,int j) {
return a[i] < a[j] ? i : j;
}
inline int Calc(int l,int r) {
if (r < l) swap(l, r);
int t = Log[r - l + ];
return Min(f[l][t], f[r - ( << t) + ][t]);
}
inline void updl(int l,int r,int o) {
int p = Calc(l, r);
LL t = 1ll * a[p] * (r - p + ) + sr[l] - sr[p];
Answer += o * t;
}
inline void updr(int l,int r,int o) {
int p = Calc(l, r);
LL t = 1ll * a[p] * (p - l + ) + sl[r] - sl[p];
Answer += o * t;
}
int main() { fi("1.txt");
int n = read(), Q = read(), B = sqrt(n); Log[] = -;
for (int i=; i<=n; ++i) {
a[i] = read();
bel[i] = (i - ) / B + ;
Log[i] = Log[i >> ] + ;
f[i][] = i;
}
for (int i=; i<=Q; ++i)
q[i].l = read(), q[i].r = read(), q[i].id = i; for (int j=; j<=Log[n]; ++j)
for (int i=; i+(<<j)-<=n; ++i)
f[i][j] = Min(f[i][j - ], f[i + ( << (j - ))][j - ]); int top = ;
for (int i=; i<=n; ++i) {
while (top && a[sk[top]] >= a[i]) R[sk[top]] = i, top --;
sk[++top] = i;
}
while (top) R[sk[top]] = n + , top --;
for (int i=n; i>=; --i) {
while (top && a[sk[top]] > a[i]) L[sk[top]] = i, top --;
sk[++top] = i;
}
while (top) L[sk[top]] = , top --; for (int i=; i<=n; ++i) sl[i] = sl[L[i]] + 1ll * (i - L[i]) * a[i];
for (int i=n; i>=; --i) sr[i] = sr[R[i]] + 1ll * (R[i] - i) * a[i]; sort(q + , q + Q + );
int l = , r = ;
for (int i=; i<=Q; ++i) {
while (l > q[i].l) l --, updl(l, r, ); // 先加在减!!!
while (r < q[i].r) r ++, updr(l, r, );
while (l < q[i].l) updl(l, r, -), l ++;
while (r > q[i].r) updr(l, r, -), r --;
ans[q[i].id] = Answer;
}
for (int i=; i<=Q; ++i)
printf("%lld\n", ans[i]);
return ;
}

4540: [Hnoi2016]序列的更多相关文章

  1. BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]

    4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...

  2. BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)

    BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...

  3. BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解

    传送门 BZOJ 4540 题解 --怎么说呢--本来想写线段树+矩阵乘法的-- --但是嘛--yali的机房太热了--困--写不出来-- 于是弃疗,写起了莫队.(但是我连莫队都想不出来!) 首先用单 ...

  4. bzoj 4540: [Hnoi2016]序列

    Description 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称 ...

  5. bzoj 4540: [Hnoi2016]序列 莫队

    题目: 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a ...

  6. BZOJ 4540 [Hnoi2016]序列 (单调栈 + ST表 + 莫队算法)

    题目链接  BZOJ4540 考虑莫队算法. 这题难在$[l, r]$到$[l, r+1]$的转移. 根据莫队算法的原理,这个时候答案应该加上 $cal(l, r+1) + cal(l+1, r+1) ...

  7. bzoj 4540: [Hnoi2016]序列【单调栈+线段树】

    强烈安利:http://blog.csdn.net/qq_34637390/article/details/51313126 这篇讲标记讲的非常好,这个标记非常神奇-- 首先last表示扫描到last ...

  8. [BZOJ4540][HNOI2016]序列 莫队

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...

  9. [Bzoj4540][Hnoi2016] 序列(莫队 + ST表 + 单调队列)

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1567  Solved: 718[Submit][Status] ...

随机推荐

  1. 学习python第一天总纲

    1).python基础语法:4周课程(结束阶段考试) 2).前端知识点:html.css.javascript(js).jQuery 3).Linux(系统).数据库(关系型&非关系型) 4) ...

  2. TP,TN,FP,FN

    一张图搞定~~~ [转]https://blog.csdn.net/u011956147/article/details/78967145

  3. bzoj 3339 Rmq Problem / mex

    题目 我的树状数组怎么那么慢啊 就是一道水题,我们考虑一下对于一个区间\([l,r]\)什么样的数能被计算 显然需要对于一个\(j\),需要满足\(j<l\)且\(nxt_{j}>r\), ...

  4. x-frame-options、iframe与iframe的一些操作

    iframe的子操作父窗口,父操作子窗口: test.php: <!DOCTYPE html> <html> <head> <title>test< ...

  5. VS2012与VS2015同时安装用VS2012创建MFC程序时弹出编译错误”fatal error C1083: 无法打开包括文件:“mprapidef.h”: No such file or directory”的解决办法

    在WIndows 7操作系统上同时安装VS2012与VS2015并用VS2012创建MFC程序时弹出编译错误”fatal error C1083: 无法打开包括文件:“mprapidef.h”: No ...

  6. HomeKit 开发指南(中文版)

    转载自cocoachina 本文由CocoaChina翻译组成员iBenjamin_Go和浅夏@旧时光翻译自苹果开发文档:HomeKit Developer Guide,敬请勘误. 本文档内容包括 第 ...

  7. oracle查询用户的权限

    DBA_* 描述的是数据库中的所有对象 ALL_* 描述的是当前用户有访问权限的所有对象 USER_* 描述的是当前用户所拥有的所有对象 查看所有用户:  select * from dba_user ...

  8. python 输入一个字符,是小写转换为大写,大写转换为小写,其他字符原样输出

    s = input('请输入一个字符:') if 'a' <= s <= 'z': print(chr(ord(s) - 32)) elif 'A' <= s <= 'Z': ...

  9. C++练习 | 递归判断二叉树是否同构

    #include <iostream> using namespace std; struct Tree { int data; Tree *lchild; Tree *rchild; } ...

  10. 解决不能修改 Mysql 慢查询 long_query_time 值的问题

    起因:想修改一下自己电脑上的MySQL的 long_query_time 值,以此来测试 MySQL的慢查询功能. 可是,无论怎么改,show variables like 'long_query_t ...