4540: [Hnoi2016]序列
4540: [Hnoi2016]序列
https://www.lydsy.com/JudgeOnline/problem.php?id=4540
分析:
莫队+RMQ+单调栈。
考虑加入一个点后,区间发生了什么变化。[l,r]->[l,r+1],增加了r-l+1段区间。设[l,r+1]的最小值在p,那么左端点在l~p-1的区间,答案就是a[p]了,p右边同样还存在许多最小值,影响了一段的区间。
每个点影响的区间是这样的,p的贡献就是a[p]*(p-l+1),剩余的贡献,可以记录每个位置向左的前缀和,那么求出p+1~R+1的贡献就行了(L可能不是最小的点,不能直接算L~R+1,只能从p开始算,p剩余的部分,单独算了)。同样的向右的也是这样求出。用单调栈求出每个位置左边第一个比它大的L[i],然后sl[i] = sl[L[i]] + a[i] * (i - L[i])。快速求出最小的值得位置的过程可以用RMQ维护。
于是就可以开心的用莫队了。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; int a[N], sk[N], bel[N], L[N], R[N], f[N][], Log[N];
LL ans[N], sl[N], sr[N], Answer;
struct Que{
int l, r, id;
bool operator < (const Que &A) const {
return bel[l] == bel[A.l] ? r < A.r : bel[l] < bel[A.l];
}
}q[N]; inline int Min(int i,int j) {
return a[i] < a[j] ? i : j;
}
inline int Calc(int l,int r) {
if (r < l) swap(l, r);
int t = Log[r - l + ];
return Min(f[l][t], f[r - ( << t) + ][t]);
}
inline void updl(int l,int r,int o) {
int p = Calc(l, r);
LL t = 1ll * a[p] * (r - p + ) + sr[l] - sr[p];
Answer += o * t;
}
inline void updr(int l,int r,int o) {
int p = Calc(l, r);
LL t = 1ll * a[p] * (p - l + ) + sl[r] - sl[p];
Answer += o * t;
}
int main() { fi("1.txt");
int n = read(), Q = read(), B = sqrt(n); Log[] = -;
for (int i=; i<=n; ++i) {
a[i] = read();
bel[i] = (i - ) / B + ;
Log[i] = Log[i >> ] + ;
f[i][] = i;
}
for (int i=; i<=Q; ++i)
q[i].l = read(), q[i].r = read(), q[i].id = i; for (int j=; j<=Log[n]; ++j)
for (int i=; i+(<<j)-<=n; ++i)
f[i][j] = Min(f[i][j - ], f[i + ( << (j - ))][j - ]); int top = ;
for (int i=; i<=n; ++i) {
while (top && a[sk[top]] >= a[i]) R[sk[top]] = i, top --;
sk[++top] = i;
}
while (top) R[sk[top]] = n + , top --;
for (int i=n; i>=; --i) {
while (top && a[sk[top]] > a[i]) L[sk[top]] = i, top --;
sk[++top] = i;
}
while (top) L[sk[top]] = , top --; for (int i=; i<=n; ++i) sl[i] = sl[L[i]] + 1ll * (i - L[i]) * a[i];
for (int i=n; i>=; --i) sr[i] = sr[R[i]] + 1ll * (R[i] - i) * a[i]; sort(q + , q + Q + );
int l = , r = ;
for (int i=; i<=Q; ++i) {
while (l > q[i].l) l --, updl(l, r, ); // 先加在减!!!
while (r < q[i].r) r ++, updr(l, r, );
while (l < q[i].l) updl(l, r, -), l ++;
while (r > q[i].r) updr(l, r, -), r --;
ans[q[i].id] = Answer;
}
for (int i=; i<=Q; ++i)
printf("%lld\n", ans[i]);
return ;
}
4540: [Hnoi2016]序列的更多相关文章
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解
传送门 BZOJ 4540 题解 --怎么说呢--本来想写线段树+矩阵乘法的-- --但是嘛--yali的机房太热了--困--写不出来-- 于是弃疗,写起了莫队.(但是我连莫队都想不出来!) 首先用单 ...
- bzoj 4540: [Hnoi2016]序列
Description 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称 ...
- bzoj 4540: [Hnoi2016]序列 莫队
题目: 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a ...
- BZOJ 4540 [Hnoi2016]序列 (单调栈 + ST表 + 莫队算法)
题目链接 BZOJ4540 考虑莫队算法. 这题难在$[l, r]$到$[l, r+1]$的转移. 根据莫队算法的原理,这个时候答案应该加上 $cal(l, r+1) + cal(l+1, r+1) ...
- bzoj 4540: [Hnoi2016]序列【单调栈+线段树】
强烈安利:http://blog.csdn.net/qq_34637390/article/details/51313126 这篇讲标记讲的非常好,这个标记非常神奇-- 首先last表示扫描到last ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
- [Bzoj4540][Hnoi2016] 序列(莫队 + ST表 + 单调队列)
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1567 Solved: 718[Submit][Status] ...
随机推荐
- Linux Min装机--配置JDK替换OpenJDK
@Linux Min装机--配置JDK替换OpenJDK 1.将下载的JDK压缩包解压到/usr/lib/jvm wil use : 一.文件复制命令cp 命令格式:cp [-adfilp ...
- BZOJ4870:[SHOI2017]组合数问题(组合数学,矩阵乘法)
Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 ...
- HTML data-* 自定义属性
HTML data-* 自定义属性 data-*是HTML5新添加的全局属性,通过它我们可以自定义属性,就像id,class等属性一样.我们可以使用JavaScript来操作这些属性. <div ...
- Mac安装软件时提示已损坏的解决方法
问题描述 最近安装从网上下载的软件,安装完之后打开提示xxx已损坏,打不开,软件无法打开. 其实,这是新系统(macOS Sierra 10.12.X)新安全机制的锅,它默认不允许用户自行下载安装应用 ...
- WPF实战俄罗斯方块
概述 本文试图通过经典的游戏-俄罗斯方块,来演示WPF强大的图形界面编程功能. 涉及的图形方面有这几个方面: 1.不规则界面的设置 2.布局系统的使用 3.2D图形的应用 4.输入事件的响应 5.风格 ...
- alibaba之Nacos
本文为转载文章 原文链接:https://windmt.com/2018/11/09/intro-to-spring-cloud-alibaba-nacos/ 上个月最后一天的凌晨,Spring Cl ...
- I、Python 环境搭建
I.安装Python https://www.python.org/downloads/windows/ 下载路径总是变,认准那个名字 安装, 记住,所有语言都推荐安装在 默认路径,不要相信那些让你改 ...
- 2019年,200道面试题打造最受企业欢迎的iOS程序猿!
在2018年底,小编混迹在各种iOS交流群中,整理出了将近两百道大厂最喜欢在面试问到的问题,今天在这里分享给大家[免费获取方式在最后]! 小编就不在 ...
- C++快速开发样本工程的建立--建立工程
因为QT建立工程清晰整洁,便于作为样板工程原型.采用QT 5.8.0 64位版本建立工程. 1.建立工程 打开VS2015 新建->新建项目->QT GUI Application -&g ...
- python3 datetime和time获取当前日期和时间
import datetime import time # 获取当前时间, 其中中包含了year, month, hour, 需要import datetime today = datetime.da ...