CERC2013(C)_Magical GCD
题意是这样的,给你一个序列a[i],需要你选一段连续的序列a[i]到a[j],使得长度乘以这个段的gcd最大。
一开始总是以为是各种神奇的数据结构,诶,后来才发现,机智才是王道啊。
可以这样考虑,每次我对于某一个数,保存若干个值,以i为右端点的区间且gcd为某一值的时候这个区间最大的左端点位置是哪里?
但是你也许会认为这样做状态会不会有点多?更新是不是n方的呢?
其实不是的,因为我们可以从左到右来递推。
什么意思呢?对于每一个数,它与前面构成的gcd一定不会太多(约数肯定不会太多),所以我们最多也只需要保存每一个约数为gcd的时候左边最远能够拓展的位置。
其实远远不要保存每一个约数的位置,因为实际上很多的约数都不是gcd,这样我们就可以由左边的所有状态和右边的一个gcd一次来递推了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#define maxn 100100
using namespace std;
typedef long long ll; struct node{
ll num,pos;
}cur; ll gcd(ll x,ll y) { return y==?x:gcd(y,x%y); } ll a[maxn],n,m,k,t,ans;
vector<node> f[maxn]; int main()
{
cin>>t;
while (t--)
{
cin>>n;
for (ll i=; i<=n; i++) cin>>a[i],f[i].clear();
ans=max(n,a[]);
cur.num=a[],cur.pos=;
f[].push_back(cur);
for (int i=; i<=n; i++)
{
for (unsigned j=; j<f[i-].size(); j++)
{
cur.num=gcd(a[i],f[i-][j].num);
cur.pos=f[i-][j].pos;
bool flag=false;
for (unsigned k=; k<f[i].size(); k++)
{
if (f[i][k].num==cur.num)
{
f[i][k].pos=min(f[i][k].pos,cur.pos);
flag=true;
break;
}
}
if (!flag) f[i].push_back(cur);
}
cur.num=a[i];
cur.pos=i;
bool flag=false;
for (unsigned k=; k<f[i].size(); k++)
{
if (f[i][k].num==cur.num)
{
f[i][k].pos=min(f[i][k].pos,cur.pos);
flag=true;
break;
}
}
if (!flag) f[i].push_back(cur); for (unsigned j=; j<f[i].size(); j++)
ans=max(ans,f[i][j].num*(i-f[i][j].pos+));
}
cout<<ans<<endl;
}
return ;
}
CERC2013(C)_Magical GCD的更多相关文章
- 【BZOJ】【4052】【CERC2013】Magical GCD
DP/GCD 然而蒟蒻并不会做…… Orz @lct1999神犇 首先我们肯定是要枚举下端点的……嗯就枚举右端点吧…… 那么对于不同的GCD,对应的左端点最多有log(a[i])个:因为每次gcd缩小 ...
- 4052: [Cerc2013]Magical GCD
4052: [Cerc2013]Magical GCD Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 148 Solved: 70[Submit][ ...
- 【BZOJ4052】[Cerc2013]Magical GCD 乱搞
[BZOJ4052][Cerc2013]Magical GCD Description 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12. 求一个连续子序列,使得在所有的连续 ...
- [BZOJ4052][Cerc2013]Magical GCD
[BZOJ4052][Cerc2013]Magical GCD 试题描述 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12. 求一个连续子序列,使得在所有的连续子序列中,它们 ...
- BZOJ 4052: [Cerc2013]Magical GCD
以一个数字开头的子序列的gcd种类不会超过logn种,因此去找相同gcd最长的位置,更新一下答案,复杂度O(nlogn^2) #include<cstdio> #include<al ...
- [Cerc2013]Magical GCD
https://vjudge.net/problem/UVA-1642 题意:在一个序列中,找出一段连续的序列,使得长度*gcd最大 固定右端点,当左端点从左向右移动时,gcd不变或变大 gcd相同时 ...
- BZOJ.4052.[Cerc2013]Magical GCD(思路)
BZOJ \(Description\) 给定\(n\)个数的序列\(a_i\).求所有连续子序列中,序列长度 × 该序列中所有数的gcd 的最大值. \(n\leq10^5,\ a_i\leq10^ ...
- 【bzoj4052】[Cerc2013]Magical GCD 暴力
题目描述 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12. 求一个连续子序列,使得在所有的连续子序列中,它们的GCD值乘以它们的长度最大. 样例输入 1 5 30 60 2 ...
- 【数论】【暴力】bzoj4052 [Cerc2013]Magical GCD
考虑向一个集合里添加一个数,它们的gcd要么不变,要么变成原gcd的一个约数.因此不同的gcd只有log个. 所以对于每个位置,维护一个表,存储从这个位置向前所有的不同的gcd及其初始位置,然后暴力更 ...
随机推荐
- 20155223 2016-2017-2 《Java程序设计》第10周学习总结
20155223 2016-2017-2 <Java程序设计>第10周学习总结 教材学习内容总结 Java Socket编程 网络上的两个程序通过一个双向的通讯连接实现数据的交换,这个双向 ...
- Java技术——Interface与abstract类的区别
)抽象类是对类抽象,是面向整个类的自下而上的设计理念,一般是先有各种子类,再有把这些有关系的子类加以抽象为父类的需求.而接口是对行为的抽象,是面向行为的自上而下的设计理念,接口根本就不需要知道子类的存 ...
- day4 CSS属性操作
1.CSS属性 基本属性 height, 高度 百分比 width, 宽度 像素,百分比 text-align:ceter, 水平方向居中 line-height, 垂直方向根据标签高度 color. ...
- 宿主机 PL/SQL Developer 连接虚拟机 ORACLE 数据库
1.确保主机与虚拟机间通信正常,双方关闭window防火墙.如能 ping 通,请确保两机IP在一个网段 2.主机安装orcl客户端 3.虚拟机 D:\app\lin\product\11.2.0\d ...
- PostFix使用dovecot支持POP3/IMAP收信
PostFix只能够收发邮件,以及使用SMTP发送邮件,想要使用POP3/IMAP收信的话必须装其他软件,本文通过配置dovecot让邮件服务器支持POP3/IMAP收信.POP3/IMAP是一种收信 ...
- Selenide 阶段性总结介绍(UI自动化测试工具)
今天给大家介绍一个比较新的UI自动化测试工具-- Selenide.确实是比较新的,国内应该还没有多少人用它.在百度和google上你只能搜到一个中文帖子简单介绍了一下.如果你想用这个工具,不可避免的 ...
- json简单操作
通过内置的json模块对json数据进行编码 1.对数据进行编码(dumps) import json #使用dumps将python数据结构转换为json data = { , "name ...
- 《More Effective C++ 》读书笔记(二)Exception 异常
这事篇读书笔记,只记录自己的理解和总结,一般情况不对其举例子具体说明,因为那正是书本身做的事情,我的笔记作为梳理和复习之用,划重点.我推荐学C++的人都好好读一遍Effective C++ 系列,真是 ...
- IO多路复用(一)-- Select、Poll、Epoll
在上一篇博文中提到了五种IO模型,关于这五种IO模型可以参考博文IO模型浅析-阻塞.非阻塞.IO复用.信号驱动.异步IO.同步IO,本篇主要介绍IO多路复用的使用和编程. IO多路复用的概念 多路复用 ...
- 【Pthon入门学习】99乘法表
学习知识点: 1. string.join(seq): 以string字符串作为分隔符,将seq的所有元素拼接成一个新的字符串 s = ['%d * %d = %d' % (y, 4, 4*y) fo ...