FFT多项式乘法模板
有时间来补算法原理orz
#include <iostream>
#include <cstdio>
#include <cmath>
#include <complex>
using namespace std;
const double pi = acos(-);
const int maxn = ;
typedef complex<double> Complex;
void DFT(Complex *a, int n, int t)
{
if(n == ) return;
Complex a0[n>>], a1[n>>];
for(int i = ; i < n; i += ) a0[i>>] = a[i], a1[i>>] = a[i+];
DFT(a0, n>>, t); DFT(a1, n>>, t);
Complex wn(cos(*pi/n), t*sin(*pi/n)), w(, );
for(int i = ; i < (n>>); i++, w *= wn) a[i] = a0[i] + w*a1[i], a[i+(n>>)] = a0[i] - w*a1[i];
}
Complex a[maxn], b[maxn];
int n1, n2, nn, x, c[maxn];
int main()
{
freopen("a.txt", "r", stdin);
cin>>n1>>n2;
for(int i = ; i <= n1; i++) cin>>x, a[i] = Complex(x, );
for(int i = ; i <= n2; i++) cin>>x, b[i] = Complex(x, );
nn = ; while(nn <= n1+n2) nn <<= ;
DFT(a, nn, ); DFT(b, nn, );
for(int i = ; i <= nn; i++) a[i] = a[i]*b[i];
DFT(a, nn, -);
for(int i = ; i <= n1+n2; i++) c[i] = (a[i].real()/nn+0.5);
for(int i = ; i < n1+n2; i++) if(c[i] > ) c[i+] += c[i]/, c[i] %= ;
for(int i = n1+n2; i >= ; i--) cout<<c[i];
return ;
}
FFT多项式乘法模板的更多相关文章
- FFT多项式乘法加速
FFT基本操作...讲解请自己看大学信号转置系列... 15-5-30更新:改成结构体的,跪烂王学长啊啊啊啊机智的static... #include<iostream> #include ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- 洛谷P3803 【模板】多项式乘法(FFT)
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...
- 洛谷 P3803 【模板】多项式乘法(FFT)
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)
题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...
- 多项式乘法(FFT)模板 && 快速数论变换(NTT)
具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...
随机推荐
- CSS3--j惊艳到你的新前端
一.css3的选择器 1. 父子选择器 直接关系 .box>.com 2. 兄弟选择器 相邻关系 .box+.com <span>hello</span> <p&g ...
- http一些常见知识记录
HTTP请求包(浏览器信息) 我们先来看看Request包的结构, Request包分为3部分,第一部分叫Request line(请求行), 第二部分叫Request header(请求头),第三部 ...
- JavaScript之this解析
1.解析器在调用函数每次都会向函数内部传递进一个隐含的参数,这个隐含的参数就是this,this指向的是一个对象,这个对象我们称为函数执行的上下文对象,根据函数的调用方式不同,this会指向不同的对象 ...
- C# 实现程序开机自启动
最近在做一个自动备份文件的小工具,需要用到开机自启动 下面是代码 private void checkBox8_CheckedChanged(object sender, EventArgs e) { ...
- JDBC 的使用
使用 MariaDB,JDBC 所有操作全部使用预处理 SQL 的基本类型与 Java 类型的对应关系 CHAR(N) - String VARCHAR(N) - String BOOLEN - bo ...
- ubuntu下安装LAMP环境遇到的一些小问题
0x00 今天在服务器上重新弄了一下lamp环境 安装的过程中遇到了不少小问题 记录一下解决的方案吧 服务器安装的是ubuntu 16.04.1 0x01 首先在用 apt-get install 安 ...
- Python的logging模块、os模块、commands模块与sys模块
一.logging模块 import logging logging.debug('This is debug message') logging.info('This is info message ...
- 使用Cydia Substrate Hook Android Java世界
从来没接触过Android的HOOK,在看雪上找到了一篇HOOK 的文章,但是太复杂了,应该是本地环境问题,测试不成功. 后来搜到Cydia Substrate,看了几篇文章,进入官网查看了一下文档, ...
- 虚拟现实-VR-UE4-LEAP-Motion手势识别
点击打开链接今天到手一个新东西,LEAP手势识别仪. 关于LEAP Leap是一家面向PC以及Mac的体感控制器制造公司. 具体信息百度百科http://baike.baidu.com/link?ur ...
- POI HSS 合并重复的列
import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; i ...