FFT多项式乘法模板
有时间来补算法原理orz
#include <iostream>
#include <cstdio>
#include <cmath>
#include <complex>
using namespace std;
const double pi = acos(-);
const int maxn = ;
typedef complex<double> Complex;
void DFT(Complex *a, int n, int t)
{
if(n == ) return;
Complex a0[n>>], a1[n>>];
for(int i = ; i < n; i += ) a0[i>>] = a[i], a1[i>>] = a[i+];
DFT(a0, n>>, t); DFT(a1, n>>, t);
Complex wn(cos(*pi/n), t*sin(*pi/n)), w(, );
for(int i = ; i < (n>>); i++, w *= wn) a[i] = a0[i] + w*a1[i], a[i+(n>>)] = a0[i] - w*a1[i];
}
Complex a[maxn], b[maxn];
int n1, n2, nn, x, c[maxn];
int main()
{
freopen("a.txt", "r", stdin);
cin>>n1>>n2;
for(int i = ; i <= n1; i++) cin>>x, a[i] = Complex(x, );
for(int i = ; i <= n2; i++) cin>>x, b[i] = Complex(x, );
nn = ; while(nn <= n1+n2) nn <<= ;
DFT(a, nn, ); DFT(b, nn, );
for(int i = ; i <= nn; i++) a[i] = a[i]*b[i];
DFT(a, nn, -);
for(int i = ; i <= n1+n2; i++) c[i] = (a[i].real()/nn+0.5);
for(int i = ; i < n1+n2; i++) if(c[i] > ) c[i+] += c[i]/, c[i] %= ;
for(int i = n1+n2; i >= ; i--) cout<<c[i];
return ;
}
FFT多项式乘法模板的更多相关文章
- FFT多项式乘法加速
FFT基本操作...讲解请自己看大学信号转置系列... 15-5-30更新:改成结构体的,跪烂王学长啊啊啊啊机智的static... #include<iostream> #include ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- 洛谷P3803 【模板】多项式乘法(FFT)
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...
- 洛谷 P3803 【模板】多项式乘法(FFT)
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)
题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...
- 多项式乘法(FFT)模板 && 快速数论变换(NTT)
具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...
随机推荐
- JavaSE 第二次学习随笔(三)
* 常见异常 * 数组越界异常 * 空指针异常 * * * 特点: 当程序出现异常的时候, 程序会打印异常信息并中断程序 * 所以当同时出现多个异常的时候只能执行第一个, 后边的用不到 * * 单异常 ...
- Hive初识(三)
根据用户的需求创建视图.可以将任何结果集数据保存为一个视图.视图在Hive的用法和SQL视图用法相同.它是一个标准的RDBMS概念.我们可以在视图上执行所有DML操作. 创建一个试图 可以创建一个试图 ...
- python的爬虫代理设置
现在网站大部分都是反爬虫技术,最简单就是加代理,写了一个代理小程序. # -*- coding: utf-8 -*- #__author__ = "雨轩恋i" #__date__ ...
- 《Go语言实战》书摘
书籍简介 名称:Go语言实战 作者: 威廉·肯尼迪 (William Kennedy) / 布赖恩·克特森 (Brian Ketelsen) / 埃里克·圣马丁 (Erik St.Martin) 内容 ...
- Kuernetes-设计架构(二)
Kubernetes设计架构 Kubernetes集群包含有节点代理kubelet和Master组件(APIs,scheduler.etc),一切都基于分布式的存储系统.Kubernetes架构图: ...
- (数据科学学习手札03)Python与R在随机数生成上的异同
随机数的使用是很多算法的关键步骤,例如蒙特卡洛法.遗传算法中的轮盘赌法的过程,因此对于任意一种语言,掌握其各类型随机数生成的方法至关重要,Python与R在随机数底层生成上都依靠梅森旋转(twiste ...
- 基于Ubuntu Server 16.04 LTS版本安装和部署Django之(一):安装Python3-pip和Django
近期开始学习基于Linux平台的Django开发,想配置一台可以发布的服务器,经过近一个月的努力,终于掌握了基于Apache和mod-wsgi插件的部署模式,自己也写了一个教程,一是让自己有个记录,二 ...
- 触发显示和隐藏 div
<script> window.onload = function(){ var oDiv1 = document.getElementById("div1"); va ...
- ubuntu下安装redis及在php中使用
一.安装redis sudo apt-get install redis-server 安装完成后,Redis服务器会自动启动,我们可以通过下面的命令行检查一下: # redis-cli > p ...
- es2017中的async和await要点
1. async和await最关键的用途是以同步的写法实现了异步调用,是对Generator异步方法的简化和改进.使用Generator实现异步的缺点如下: 得有一个任务执行器来自动调用next() ...