【bzoj2809】[Apio2012]dispatching 贪心+可并堆
题目描述
输入
输出
样例输入
5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1
样例输出
6
题目大意
给你一棵以1为根的树,对于每个节点的子树,找出尽量多的点,使得这些点的点权之和不超过m,并把选出节点的个数与该节点的另一种权值的乘积更新到ans中,求ans的最大值。
题解
贪心+可并堆
首先有最简单的贪心法则:对于每个子树,选择点权尽量小的点。
由于题目中的m是个固定值,所以在贪心法则下,没有被选中的点对答案不会有任何贡献,可以看做直接删掉。
那么我们可以从下至上进行操作,每次把子节点子树中保留的点传到该节点上,然后再删点。
于是需要一种数据结构,支持删除最大值,以及将两个结构合并。
显然是可并堆。
每个点只被删1次,时间复杂度O(nlogn)。
#include <cstdio>
#include <algorithm>
using namespace std;
int head[100010] , to[200010] , next[200010] , cnt , l[100010] , r[100010] , d[100010] , root[100010] , si[100010];
long long v[100010] , w[100010] , sum[100010] , m , ans;
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
int merge(int x , int y)
{
if(!x) return y;
if(!y) return x;
if(v[x] < v[y]) swap(x , y);
r[x] = merge(r[x] , y);
if(d[l[x]] < d[r[x]]) swap(l[x] , r[x]);
d[x] = d[r[x]] + 1;
return x;
}
void dfs(int x)
{
int i;
root[x] = x , sum[x] = v[x] , si[x] = 1;
for(i = head[x] ; i ; i = next[i])
dfs(to[i]) , sum[x] += sum[to[i]] , si[x] += si[to[i]] , root[x] = merge(root[x] , root[to[i]]);
while(sum[x] > m)
sum[x] -= v[root[x]] , si[x] -- , root[x] = merge(l[root[x]] , r[root[x]]);
ans = max(ans , w[x] * si[x]);
}
int main()
{
int n , i , x;
scanf("%d%lld" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
scanf("%d%lld%lld" , &x , &v[i] , &w[i]) , add(x , i);
d[0] = -1;
dfs(1);
printf("%lld\n" , ans);
return 0;
}
【bzoj2809】[Apio2012]dispatching 贪心+可并堆的更多相关文章
- [BZOJ2809][Apio2012]dispatching 贪心+可并堆
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 我们考虑以每一个节点作为管理者所得的最优答案,一定是优先选择所要薪水少的忍者.那么首 ...
- bzoj2809 [Apio2012]dispatching(左偏树)
[Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 M ...
- BZOJ2809 [Apio2012]dispatching 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2809 题意概括 n个点组成一棵树,每个点都有一个领导力和费用,可以让一个点当领导,然后在这个点的子 ...
- bzoj2809 [Apio2012]dispatching——左偏树(可并堆)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...
- BZOJ2809: [Apio2012]dispatching
传送门 主席树经典题. 首先把树搞出来,然后搞出来DFS序.然后离散化点权,在DFS序上建立主席树. 对于每个点对应的区间,查找对应的区间最大的点数即可. //BZOJ2809 //by Cydiat ...
- BZOJ2809——[Apio2012]dispatching
1.题目大意:给一棵树和M值,每个点有两个权值C和L,选x个点,这x个点的C值的和不能超过M,且这x个点如果都在某个子树内 定义满意度为x*这个子树的根的L值 2.分析:这是一道可并堆的题目,我们考虑 ...
- bzoj2806 [Apio2012]dispatching【可并堆】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 保存可并堆模版代码. #include <cstdio> #include ...
- BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)
这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...
- [BZOJ2809][Apio2012]dispatching(左偏树)
首先对于一个节点以及它的子树,它的最优方案显然是子树下选最小的几个 用左偏树维护出每棵子树最优方案的节点,记录答案 然后它的这棵树可以向上转移给父节点,将所有子节点的左偏树合并再维护就是父节点的最优方 ...
随机推荐
- Mac系统配置php环境
[写在前面——叨叨叨] -_-#急着配环境的同志们可以绕道.最近学校的实验室里接了一个小项目——考勤刷卡系统,利用RFID在硬件层获取学生卡的ID,通过wifi传输至服务器,进行考勤信息存储,手机端获 ...
- 使用SQLite删除Mac OS X 中launchpad里的快捷方式
一般情况下,从App Store安装的应用程序,如果应用删除,那么launchpad里对应的图标会一起删除了. 而对于不是通过App Store安装的应用程序,删除应用程序,Launchpad中很可能 ...
- 网站漏洞修复之最新版本UEditor漏洞
UEditor于近日被曝出高危漏洞,包括目前官方UEditor 1.4.3.3 最新版本,都受到此漏洞的影响,ueditor是百度官方技术团队开发的一套前端编辑器,可以上传图片,写文字,支持自定义的h ...
- linux-课题练习1
1.创建组testgroup: 2.创建用户a2012,先采用默认设置创建,然后使该用户加入testgroup组. 3.创建用户a2013,其用户主目录为/tmp/a2013,其主组为testgrou ...
- 008---re正则模块
re正则模块 字符串的匹配规则 匹配模式 re.match() re.search() re.findall() re.split() re.sub() 元字符 print('------------ ...
- 002---time & datetime
time & datetime 时间模块 分类 时间戳 时间字符串 时间元祖 定义 UTC:格林威治时间,世界标准时间,中国(UTC + 8) 时间戳:1970-01-01 0:0:0 开始按 ...
- 用ssh进行git clone出现 fatal: Could not read from remote repository.
问题:在通过MobaXterm进行ssh连接的服务器上用ssh进行git clone出现 fatal: Could not read from remote repository. 解决方法:prox ...
- java 获取图片大小(尺寸)
1,获取本地图片大小(尺寸) File picture=new File(strSrc);BufferedImage sourceImg=ImageIO.read(new FileInputStrea ...
- Android面试收集录 网络与加密
1.创建Socket对象需要至少指定哪些信息? IP(或域名)和端口号 Socket socket=new Socket("www.baidu.com",80); 2.如何使用So ...
- CentOS修改网卡名称
转 一.问题说明 测试环境中出现的小问题,因为虚拟机之间经常复制来复制去,导致网卡配置这块的不一致现象. 配置文件的信息: [root@ora10g network-scripts]# catifcf ...