题目大意:

给你一个序列An,然后求有多少个序列Bn

满足Bi<=Ai,且这个序列的gcd不为1

题解:

考虑这样做

枚举一个因子k,然后求出有多少个序列的gcd包含这个因子k

然后把结果容斥一下,我们会发现,这个容斥恰好就是求莫比乌斯函数

所以直接先预处理出来即可

于是k从2到n依次枚举,然后把结果乘以u(k)加到最后的答案里。

另一个问题是,如何快速求出有多少个序列呢,如果单纯的把每个数除以k然后加起来,就是n^2logn

显然会超时。

所以这里先把数存起来,然后整体来做

对于k来说,每次就枚举k,2k,3k.....m*k,然后可以得到,能包含k的数有多少个,2k的数有多少个,那么我们就可以在n/k的复杂度下统计出来有多少个序列

然后枚举k,最后就是n+n/2+...n/k = nlogn的复杂度了

(可能有更好的做法)

#include <iostream>
#include <cstring>
#include <vector>
#include <cstdio>
using namespace std;
const int maxn = 1e5 + ;
const int MOD = ;
typedef long long LL;
LL minpri[maxn], H[maxn], a[maxn], ans[maxn], flag[maxn];
vector<int> prime;
const int maxlen=maxn;
int mu[maxlen],prinum[maxlen], len=;
void CalPri(){
int num[maxlen];
for(int i=;i<maxlen;i++)num[i]=i;
for(int i=;i<maxlen;i++){
if(num[i]==)continue;
prinum[len++]=i;
mu[i]=-;
for(int j=*i;j<maxlen;j+=i)
num[j]=;
}
}
void Calmu(){
CalPri();
mu[]=;
for(int i=;*i<=maxlen;i++){
for(int j=;j<len&&prinum[j]*i<maxlen;j++){
if(i%prinum[j]==){
mu[prinum[j]*i]=;
break;
}
mu[prinum[j]*i]=-mu[i];
}
}
} LL mypow(LL a, LL b){
LL ANS = ;
for(; b; b >>= ){ if(b&) (ANS *= a) %= MOD; (a *= a) %= MOD; } return ANS;
} int main()
{
int T, n;
cin>>T;
Calmu();
for(int ncase = ; ncase <= T; ncase++){
scanf("%d", &n);
memset(H, , sizeof(H));
memset(ans, , sizeof(ans));
LL ANS = , Max = , Min = 1e9;
for(int i = ; i <= n; i++) scanf("%d", &a[i]), H[a[i]]++, Max = max(Max, a[i]), Min = min(Min, a[i]);
for(int i = Max; i >= ; i--) H[i] += H[i+];
//for(int i = 1; i <= Max; i++) cout<<H[i]<<" "; cout<<endl;
for(int x = ; x <= Min; x++){
if(mu[x] == ) continue;
int tot = , lans = n;
for(int i = ; i*x <= Max; i++){
ans[tot] = lans - H[i*x];
lans = H[i*x];
tot++;
}
ans[tot] = lans;
//for(int i = 1; i <= tot; i++) cout<<ans[i]<<" "; cout<<endl;
LL temp = tot > ? : ;
for(int i = ; i <= tot; i++) (temp *= mypow(i, ans[i])) %= MOD;
(ANS += temp*(-mu[x])) %= MOD;
for(int i = ; i <= tot; i++) ans[i] = ;
}
(ANS += MOD) %= MOD;
cout<<"Case #"<<ncase<<": "<<ANS<<endl;
}
return ;
}

2017 Multi-University Training Contest - Team 2 TrickGCD(组合数学)的更多相关文章

  1. 2017 Multi-University Training Contest - Team 2 &&hdu 6053 TrickGCD

    TrickGCD Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  2. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  3. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  4. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  5. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  6. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  7. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  8. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  9. 2017 Multi-University Training Contest - Team 1 1002&&HDU 6034 Balala Power!【字符串,贪心+排序】

    Balala Power! Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

随机推荐

  1. Linux系统修改/etc/sysconfig/i18n文件,桌面无法正常显示

    在Windows环境下使用SSH Secure Shell Client登陆VMware Workstation中Linux系统查询hive表时,中文显示乱码:数字和url显示为NULL,网上说: 1 ...

  2. 精干货! Java 后端程序员 1 年工作经验总结

    一.引言   毕业已经一年有余,这一年里特别感谢技术管理人员的器重,以及同事的帮忙,学到了不少 东西.这一年里走过一些弯路,也碰到一些难题,也受到过做为一名开发却经常为系统维护 和发布当救火队员的苦恼 ...

  3. centOS下更新yum源

    CentOS下更新yum源 1.使用如下命令,备份/etc/yum.repos.d/CentOS-Base.repo. cp /etc/yum.repos.d/CentOS-Base.repo /et ...

  4. Apache Struts最新漏洞 远程代码执行漏洞预警 2018年11月08日

    2018年11月8日,SINE安全监控检测中心,检测到Apache Struts官方更新了一个Struts漏洞补丁,这个漏洞是Apache Struts目前最新的漏洞,影响范围较广,低于Apache ...

  5. java 第六章 面向对象基础

    1.面向对象编程思想 面向过程编程 传统的C语言属于面向过程编程.面向过程解决问题的思路:通常是分析出解决问题所需要的步骤,然后用方法把这些步骤一步一步实现,最后一个一个依次调用方法来解决. 面向过程 ...

  6. mysql学习第四天(高级查询)

    -- 第七章-- 1.查询入职日期最早和最晚的日期select min(hiredate),max(hiredate)from emp -- 2.查询职位以SALES开头的所有员工平均工资,最低工资, ...

  7. Python正则表达式中的re.S,re.M,re.I的作用

    正则表达式可以包含一些可选标志修饰符来控制匹配的模式.修饰符被指定为一个可选的标志.多个标志可以通过按位 OR(|) 它们来指定.如 re.I | re.M 被设置成 I 和 M 标志: 修饰符 描述 ...

  8. 基于Ubuntu Server 16.04 LTS版本安装和部署Django之(五):测试项目

    基于Ubuntu Server 16.04 LTS版本安装和部署Django之(一):安装Python3-pip和Django 基于Ubuntu Server 16.04 LTS版本安装和部署Djan ...

  9. Hadoop:WordCount分析

    相关代码: package com.hadoop; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.P ...

  10. kettle 遇到 解决Incorrect integer value: '' for column 'id' at row 1 完美解决-费元星

    最近自己在测试一个开源的程序,测试中发现.该程序都添加和更新的时候回出现 Incorrect integer value: '' for column 'id' at row 1类是的错误! 后来我自 ...