「SDOI2008沙拉公主的困惑」
看着有点可怕
求
\]
考虑一下\(m=n\)的时候的答案
非常显然就是\(\varphi(m!)\)
而如果\(n>m\)
非常显然\(m!|n!\)
可以把\(n!\)想象成一个大数轴,将这个大数轴分成\(\frac{n!}{m!}\)部分,每一部分都有\(m!\)个数
第一部分的贡献是\(\varphi(m!)\)非常显然
第二部分的每个数\(k\)和\(m!\)求\(gcd\)
我们更相减损
\]
\(k-m!\)对应了第一部分里的数,所以第二个块的贡献也是\(\varphi(m!)\)
剩下的每一个块都可以通过更相减损转化成上一个块,所以每一个快的答案都是\(\varphi(m!)\)
一共\(\frac{n!}{m!}\)个块,所以答案就是
\]
通过分解质因数的方法去求\(\varphi(m!)\)非常不科学
我们考虑线性推出所有的\(\varphi(i!)\)
如果\(i\)为质数,那么\(i\)这个质因子在之前没有出现过,那么贡献是\(i-1\)
否则这些质因子在之前都出现过,所以贡献是\(i\)
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 10000005
#define LL long long
#define inf 999999999
inline int max(int a,int b) {return a>b?a:b;}
inline int read()
{
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
LL mod,phi[maxn];
int T,D,U;
struct Ask{int N,M,rk;}a[10005];
LL ans[100005];
inline int cmp(Ask A,Ask B) {return A.M<B.M;}
void exgcd(LL a,LL b,LL &x,LL &y) {if(!b) {x=1,y=0;return;}exgcd(b,a%b,y,x);y-=a/b*x;}
inline LL inv(LL a) {LL x,y;exgcd(a,mod,x,y);return (x%mod+mod)%mod;}
int f[maxn],p[maxn>>1];
int b[maxn];
LL fac[maxn];
int main()
{
T=read();mod=read();
for(re int i=1;i<=T;i++) a[i].N=read(),a[i].M=read(),a[i].rk=i,D=max(D,a[i].N),U=max(U,a[i].M);
fac[0]=1;f[1]=1,phi[1]=1;
for(re int i=2;i<=U;i++)
{
if(!f[i]) p[++p[0]]=i,phi[i]=(phi[i-1]*(LL)(i-1))%mod;
else phi[i]=(phi[i-1]*(LL)i)%mod;
for(re int j=1;j<=p[0]&&p[j]*i<=U;j++)
{
f[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
for(re int i=1;i<=D;i++) fac[i]=fac[i-1]*i%mod;
for(re int i=1;i<=T;i++) printf("%lld\n",fac[a[i].N]*inv(fac[a[i].M])%mod*phi[a[i].M]%mod);
return 0;
}
「SDOI2008沙拉公主的困惑」的更多相关文章
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 洛咕 P2155 [SDOI2008]沙拉公主的困惑
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...
随机推荐
- 使用 PuTTY 时遇到错误:“expected key exchange group packet from server”
情况 使用 PuTTY 通过 SSH 访问 ProxySG 或 Advanced Secure Gateway (ASG) 时,您会看到如下错误:"expected key exchange ...
- Vue添加新的响应式属性
vm.userProfile = Object.assign({}, vm.userProfile, { age: , favoriteColor: 'Vue Green' })
- android点击桌面App图标activity启动流程
1.点击桌面App图标,Launcher进程采用Binder IPC向system_server进程发起startActivity请求:2.system_server进程接收到请求后,向zygote进 ...
- Yii 自带的分页实例
yii自带的分页很好用,简单的几行代码就能把分页搞出来,唯一恼火的是只能写在controller中,所以有时候controller中的方法有点臃肿.废话少说,上代码上图. 一.代码实例: 1.控制器中 ...
- Oracle使用sys登录时报错ORA-28009解决方法
情况一:使用sqlplus登录: 正常输入用户名的口令,就会报错,因为SYS是在数据库之外的超级管理员,所以我们在登录的时候 要在输入口令:口令+as sysdba(比如:123456 as sysd ...
- hibernateAPI详解
1 Configuration package www.test.b_api; import org.hibernate.Session; import org.hibernate.SessionFa ...
- Scala安装及开发环境搭建
最近想学习下scala,为后面转大数据做一些沉淀. 1. 首先保证jdk已经成功安装 2. 去官网下载scala安装程序 http://www.scala-lang.org/download/all. ...
- MATLAB中的概率论与数理统计
概率论与数理统计 产生随机数 binornd poissrnd exprnd unidrnd normrnd 概率密度函数(pdf) binopdf poisspdf geopdf unidpdf n ...
- 7、侧边栏:Menu
1.单个侧边栏 导航的代码在分析源码的时候已经分析过了,下面只看他的一些应用与方法. /* ---示例代码----*/ <ion-menu [content]="mycontent&q ...
- C#-01.语法基础
a. 语法基础 i. 命名空间(namespace):是 C# 中组织代码的方式,用来声明命名空间 . 语法:namespace 命名空间名称{ //命名空间的声明 } . 作用:可以把紧密相关的一些 ...