任意门:http://codeforces.com/contest/1073/problem/C

C. Vasya and Robot

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell (0,0)(0,0). Robot can perform the following four kinds of operations:

  • U — move from (x,y) to (x,y+1)
  • D — move from (x,y)to (x,y−1)
  • L — move from (x,y)to (x−1,y)
  • R — move from (x,y) to (x+1,y)

Vasya also has got a sequence of nn operations. Vasya wants to modify this sequence so after performing it the robot will end up in (x,y)(x,y).

Vasya wants to change the sequence so the length of changed subsegment is minimum possible. This length can be calculated as follows: maxID−minID+1maxID−minID+1, where maxIDmaxID is the maximum index of a changed operation, and minIDminID is the minimum index of a changed operation. For example, if Vasya changes RRRRRRR to RLRRLRL, then the operations with indices 22, 55 and 77 are changed, so the length of changed subsegment is 7−2+1=67−2+1=6. Another example: if Vasya changes DDDD to DDRD, then the length of changed subsegment is 11.

If there are no changes, then the length of changed subsegment is 00. Changing an operation means replacing it with some operation (possibly the same); Vasya can't insert new operations into the sequence or remove them.

Help Vasya! Tell him the minimum length of subsegment that he needs to change so that the robot will go from (0,0)(0,0) to (x,y)(x,y), or tell him that it's impossible.

Input

The first line contains one integer number n (1≤n≤2⋅105)n (1≤n≤2⋅105) — the number of operations.

The second line contains the sequence of operations — a string of nn characters. Each character is either U, D, L or R.

The third line contains two integers x,y (−109≤x,y≤109)x,y (−109≤x,y≤109) — the coordinates of the cell where the robot should end its path.

Output

Print one integer — the minimum possible length of subsegment that can be changed so the resulting sequence of operations moves the robot from (0,0)(0,0) to (x,y)(x,y). If this change is impossible, print −1−1.

Examples
input

Copy
5
RURUU
-2 3
output

Copy
3
input

Copy
4
RULR
1 1
output

Copy
0
input

Copy
3
UUU
100 100
output

Copy
-1
Note

In the first example the sequence can be changed to LULUU. So the length of the changed subsegment is 3−1+1=33−1+1=3.

In the second example the given sequence already leads the robot to (x,y)(x,y), so the length of the changed subsegment is 00.

In the third example the robot can't end his path in the cell (x,y)(x,y).

题意概括:

输入N个操作,询问修操作是否能到达终点,如果能到达终点输出“修改的区间”;

修改区间的定义:修改的最大坐标操作的坐标 - 修改的最小坐标操作的坐标

【规定起点为 (0,0),输入终点( x, y );】

操作(上下左右):

    • U — move from (x,y) to (x,y+1)
    • D — move from (x,y)to (x,y−1)
    • L — move from (x,y)to (x−1,y)
    • R — move from (x,y) to (x+1,y)

解题思路:二分 || 尺取

预处理路径前缀和(压缩路径)sum_x [ ],sum_y[ ] ;则sum_x[ N ] , sum_y[ N ] 为实际的终点;

输入的终点为 (ex, ey),假设能修改若干个操作到达输入的终点,那么:

某一段 [ st, ed ] 所走的影响为:

              X轴方向:xx = ex - ( sum_x[ N ] - sum_x[ ed -1 ] + sum_x[ st - 1 ] )

              Y轴方向:yy = ey - ( sum_y[ N ] - sum_y[ ed - 1 ] + sum_y[ st - 1 ] )

二分

二分修改区间长度 len ,尺取判断在该长度是否满足修改条件;

①操作所走最大范围不得超过 len ,因为每次操作只是上下左右移动一步

②判断能否完成假设的影响  len - abs(xx) - abs(yy))%2 ?= 0;

 abs(xx)表示的是 x 方向 到达终点 ex 的差值

 abs(yy)表示的是 y 方向 到达终点 ey 的差值

 假如 len > abs(xx)+abs(yy) 说明这段区间有操作是多余的,但是只要剩下的操作数是偶数就可以两两抵消。

尺取:

直接定义一个头指针一个尾指针,暴力一遍,条件判断是要头指针加还是尾指针加,记录最小修改区间。

AC code:

 #include<bits/stdc++.h>
using namespace std;
const int N=1e6+;
int x[N],y[N];
int sx,sy,n;
char s[N];
bool check(int m)
{
for(int i=;i<=n-m+;i++)
{
int tx=x[n]-x[i+m-]+x[i-]; //当前原来选项造成的横坐标影响
int ty=y[n]-y[i+m-]+y[i-]; //当前原来选项造成的纵坐标影响
int ex=sx-tx, ey=sy-ty; //消除当前影响
printf("%d %d m: %d\n",ex,ey,m);
if(m>=(abs(ex)+abs(ey)) && (m-abs(ex)-abs(ey))%==) //可以构造
return ;
}
return ;
}
int main()
{
//string s;
while(~scanf("%d",&n))
{
scanf("%s",s+);
x[]=y[]=;
for(int i=;i<=n;i++)
{
x[i]=x[i-];y[i]=y[i-]; //累积前面步数的结果 if(s[i]=='L') x[i]-=; //当前步数造成的影响
else if(s[i]=='R') x[i]+=;
else if(s[i]=='D') y[i]-=;
else y[i]+=;
}
// printf("%d %d\n",x[n],y[n]);
scanf("%d %d",&sx,&sy); //终点
// printf("HH");
int l=,r=n,ans=-;
while(l<=r) //二分答案
{
printf("l:%d r:%d\n", l, r);
int mid=(l+r)>>;
if(check(mid)) ans=mid,r=mid-;
else l=mid+;
}
printf("%d\n",ans);
}
}

Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot 【二分 + 尺取】的更多相关文章

  1. Educational Codeforces Round 53 (Rated for Div. 2) C Vasya and Robot 二分

    题目:题目链接 思路:对于x方向距离与y方向距离之和大于n的情况是肯定不能到达的,另外,如果n比abs(x) + abs(y)大,那么我们总可以用UD或者LR来抵消多余的大小,所以只要abs(x) + ...

  2. Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot

    题意:给出一段操作序列 和目的地 问修改(只可以更改 不可以删除或添加)该序列使得最后到达终点时  所进行的修改代价最小是多少 其中代价的定义是  终点序号-起点序号-1 思路:因为代价是终点序号减去 ...

  3. Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot(二分或者尺取)

    题目哦 题意:给出一个序列,序列有四个字母组成,U:y+1,D:y-1 , L:x-1 , R:x+1;   这是规则 . 给出(x,y) 问可不可以经过最小的变化这个序列可以由(0,0) 变到(x, ...

  4. Educational Codeforces Round 53 (Rated for Div. 2) (前五题题解)

    这场比赛没有打,后来补了一下,第五题数位dp好不容易才搞出来(我太菜啊). 比赛传送门:http://codeforces.com/contest/1073 A. Diverse Substring ...

  5. Educational Codeforces Round 53 (Rated for Div. 2)

    http://codeforces.com/contest/1073 A. Diverse Substring #include <bits/stdc++.h> using namespa ...

  6. Educational Codeforces Round 53 (Rated for Div. 2) E. Segment Sum (数位dp求和)

    题目链接:https://codeforces.com/contest/1073/problem/E 题目大意:给定一个区间[l,r],需要求出区间[l,r]内符合数位上的不同数字个数不超过k个的数的 ...

  7. [codeforces][Educational Codeforces Round 53 (Rated for Div. 2)D. Berland Fair]

    http://codeforces.com/problemset/problem/1073/D 题目大意:有n个物品(n<2e5)围成一个圈,你有t(t<1e18)元,每次经过物品i,如果 ...

  8. Educational Codeforces Round 53 (Rated for Div. 2) E. Segment Sum

    https://codeforces.com/contest/1073/problem/E 题意 求出l到r之间的符合要求的数之和,结果取模998244353 要求:组成数的数位所用的数字种类不超过k ...

  9. Educational Codeforces Round 53 (Rated for Div. 2)G. Yet Another LCP Problem

    题意:给串s,每次询问k个数a,l个数b,问a和b作为后缀的lcp的综合 题解:和bzoj3879类似,反向sam日神仙...lcp就是fail树上的lca.把点抠出来建虚树,然后在上面dp即可.(感 ...

随机推荐

  1. GreenPlum 大数据平台--备份-邮件配置-gpcrondump & gpdbrestore(五)

    01,备份 生成备份数据库 [gpadmin@greenplum01 ~]$ gpcrondump -l /gpbackup/back2/gpcorndump.log -x postgres -v [ ...

  2. elastic 常用查询操作

    _ GET      http://127.0.0.1:9200/_cat/health?v  健康状况 GET      http://127.0.0.1:9200/_cat/indices?v  ...

  3. Linux 后台运行程序 和切换至前台

    fg 将后台中的命令调至前台继续运行 jobs查看当前有多少在后台运行的命令 ctrl + z可以将一个正在前台执行的命令放到后台,并且暂停

  4. cloudemanager安装时出现failed to receive heartbeat from agent问题解决方法(图文详解)

    不多说,直接上干货! 安装cdh5到最后报如下错误: 安装失败,无法接受agent发出的检测信号. 确保主机名称正确 确保端口7182可在cloudera manager server上访问(检查防火 ...

  5. IDEA 中,编译后不拷贝 mybatis 配置的 mapper 的 xml 文件

    在maven项目的pom.xml配置文件里添加 <build> <resources> <resource> <directory>src/main/j ...

  6. MarkDown 语言简单使用

    # Markdown file ![alt img is error](http://cdn2.jianshu.io/assets/web/logo-58fd04f6f0de908401aa561cd ...

  7. 抽象工厂模式&简单工厂模式

    抽象工厂模式 优点: 如IFactory factory=new AccessFactory(),在一个应用中只需要初始化一次,这就使得改变应用的时候变得非常容易:其次它让具体的创建实例过程与客户端分 ...

  8. typeScript入门(四)泛型

    泛型:软件工程中,我们不仅要创建一致的定义良好的API,同时也要考虑可重用性. 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵活的功能. 在像C#和Ja ...

  9. 使用Anaconda管理环境

    Anaconda指的是一个开源的python发行版本,其包含了conda.Python等180多个科学包及其依赖项. Anaconda是一个开源的包.环境管理器,可以用于在同一个机器上安装不同版本的软 ...

  10. 文章点赞功能(Ajax)

    一.文章点赞样式构建 1.将base.html的css样式改为外部引入 将base.html的内嵌样式删除,改为使用 HTML 头部的 <head> 标签对中使用<link>标 ...