题意

有一块n*2的巧克力,将它分成k块,问有多少种方法。

分析

emmm是dp没错了。

最容易想到的状态定义是f[i][j],意思是前i行,分成j块的方案数。但是发现没法转移。(后面会说一下为什么···)

我们把状态定义为f[i][j][0]和f[i][j][1]。

f[i][j][0]:前i行分成j块,且第i行的两小块巧克力是没有连在一起的。

f[i][j][1]:前i行分成j块,且第i行的两小块巧克力是连在一起的。

我们来把转移分一下类。

情况1:从i行到i+1行的时候,巧克力的块数多了两块。这说明,第i+1行的两小块一定是分开的,而且没有和第i行的相连。那么转移只有一种情况f[i][j][0]=f[i-1][j-2][0]+f[i-1][j-2][1]

情况2:从i行到i+1行的时候,巧克力的块数多了一块。如果第i+1行的两小块是连在一起的一整块,那么一定没有和i行的相连。既f[i][j][1]=f[i-1][j-1][0]+f[i-1][j-1][1]。如果第i+1行的两小块是分开的,那么一定有一块是和i行相连。既f[i][j][0]=f[i-1][j-1][1]*2+f[i-1][j-1][0]*2

情况3:从i行到i+1行的时候,巧克力的块数没有增加。这就说明第i+1行的一定是和i行相连的。如果第i+1行两小块是分开的,那么第i行一定是分开的。所以f[i][j][0]=f[i-1][j][0]。如果i+1行两小块是和在一起的,那么就要分类讨论。

思路大概就是这个样子。。。

至于为什么简单的定义为f[i][j]没法转移,因为,我试过了···他就是没法转移···········

咳咳不闹,我们来看第三种情况,他的转移是和前一行是分开还是连在一起的有关。所以我们要表示出这个状态。

下面是代码,我尽量写的可读性强一些了···

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std;
const int maxn=+;
const int MOD=;
int n,k,T;
int f[maxn][*maxn][];//0分开,1和起来
int main(){
scanf("%d",&T);
for(int t=;t<=T;t++){
memset(f,,sizeof(f));
scanf("%d%d",&n,&k);
f[][][]=f[][][]=;
for(int i=;i<=n;i++){
f[i][*i][]=;f[i][][]=;
for(int j=;j<*i;j++){
//******第1,2种情况***********
f[i][j][]=(f[i-][j-][]+f[i-][j-][])%MOD;//1.1
f[i][j][]=(f[i-][j-][]*+f[i-][j-][]*)%MOD;//2.1
f[i][j][]=(f[i][j][]+f[i-][j-][]+f[i-][j-][])%MOD;//2.2 //*********第3种情况**************
f[i][j][]=(f[i][j][]+f[i-][j][]*+f[i-][j][])%MOD;
f[i][j][]=(f[i][j][]+f[i-][j][])%MOD;
}
}
int ans=(f[n][k][]+f[n][k][])%MOD;
printf("%d\n",ans);
}
return ;
}

【HDU4301】Divide Chocolate的更多相关文章

  1. 【Leetcode】 - Divide Two Integers 位运算实现整数除法

    实现两个整数的除法,不许用乘法.除法和求模.题目被贴上了BinarySearch,但我没理解为什么会和BinarySearch有关系.我想的方法也和BS一点关系都没有. 很早以前我就猜想,整数的乘法是 ...

  2. 【leetcode】Divide Two Integers (middle)☆

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  3. 【cf490】D. Chocolate(素数定理)

    http://codeforces.com/contest/490/problem/D 好神的一题,不会做.. 其实就是将所有的质因子找出来,满足: 最终的所有质因子的乘积相等 但是我们只能操作质因子 ...

  4. 【Leetcode】【Medium】Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  5. 【Leetcode】Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. class Solution { public ...

  6. 【HDU4751】Divide Groups

    题目大意:给定 N 个点和一些有向边,求是否能够将这个有向图的点分成两个集合,使得同一个集合内的任意两个点都有双向边联通. 题解:反向思考,对于没有双向边的两个点一定不能在同一个集合中.因此,构建一个 ...

  7. 【基数排序】Divide by Zero 2017 and Codeforces Round #399 (Div. 1 + Div. 2, combined) C. Jon Snow and his Favourite Number

    发现值域很小,而且怎么异或都不会超过1023……然后可以使用类似基数排序的思想,每次扫一遍就行了. 复杂度O(k*1024). #include<cstdio> #include<c ...

  8. 【bzoj2430】[Poi2003]Chocolate 贪心

    题目描述 有一块n*m的矩形巧克力,准备将它切成n*m块.巧克力上共有n-1条横线和m-1条竖线,你每次可以沿着其中的一条横线或竖线将巧克力切开,无论切割的长短,沿着每条横线切一次的代价依次为y1,y ...

  9. 【HDOJ6616】Divide the Stones(构造)

    题意:给定n堆石子,第i堆的个数为i,要求构造出一种方案将其分成k堆,使得这k堆每堆数量之和相等且堆数相等 保证k是n的一个约数 n<=1e5 思路:先把非法的情况判掉 n/k为偶数的方法及其简 ...

随机推荐

  1. warning MSB8004: Output Directory does not end with a trailing slash.

    当在VC里编译时,发现这个警告,就是说设置的目录参数不是以反斜杠结束的目录名称,如下: 1>C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\V ...

  2. 使用Reaver破解开启了WPS功能的wifi密码(wpa/wpa2)

    来自wikipeida: Wi-Fi保护设置(简称WPS,全称Wi-Fi Protected Setup)是一个无线网络安全标准,旨在让家庭用户使用无线网络时简化加密步骤.此标准由Wi-Fi联盟(Wi ...

  3. laravel 框架给数组分页

    //Get current page form url e.g. &page=6        $currentPage = LengthAwarePaginator::resolveCurr ...

  4. Python使用教程

    1.下载python windows:http://www.python.org/download/ 2.环境变量: 3.pycharm下载:http://www.python.org/downloa ...

  5. #51单片机#8位数码管(74HC595芯片)的使用方法

    数码管基本属性:1.采用2片595驱动数码管,需要单片机3路IO口,根据数码管动态扫描原理进行显示:2.宽工作电压3.3V到5V:3.PCB板尺寸:71mm*22mm4.数码管型号:0.36 4位共阳 ...

  6. Redis、Memcache和MongoDB

    一.Memcached Memcached的优点:Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于key.value的字节大小以及服务器硬件性能,日常环境中QPS高峰 ...

  7. 用hexo搭建自己的blog

    一.工具准备: 1.1 安装node 作用:用来生成静态页面的 到Node.js官网下载相应平台的最新版本,一路安装即可. 1.2 安装Git 作用:把本地的hexo内容提交到github上去. 安装 ...

  8. Weblogic启动成功,控制台打不开

    有时候,我们在linux操作系统上成功启动了weblogic,也查看了7001端口的状态是开启的.但是访问weblogic控制台没有反应,也没有报错. 使用 netstat -ano | grep 7 ...

  9. 随时查找中位数——pat1057

    http://pat.zju.edu.cn/contests/pat-a-practise/1057 题目的意思是可以在一个可以任意添加于删除整数的集合里随时查找该集合的中位数 每次查找用nlogn的 ...

  10. ES之四、Elasticsearch集群和索引常用命令

    REST API用途 elasticsearch支持多种通讯,其中包括http请求响应服务,因此通过curl命令,可以发送http请求,并得到json返回内容. ES提供了很多全面的API,常用的RE ...