最长公共上升子序列LCIS,如字面意思,就是在对于两个数列A和B的最长的单调递增的公共子序列。

这道题目是LCS和LIS的综合。

在LIS中,我们通过两重循环枚举当序列以当前位置为结尾时,A序列中当前位置之前的数是否比当前位置的数大为条件,进行对于“最长上升子序列”的长度的转移。

方程简单的表示为:f[i] = max{f[i], f[j +1]}(0 <= j < i)

边界为f[0] = 0, 目标为max{f[i]}(1 <= I <= N)

在LCS中,我们使用二维数组,对于状态“f[i, j]表示前缀子串a[1 ~ i]和b[1 ~ j]的最长公共子序列的长度”,将阶段划分为已经处理的前缀长度,f[Ii, j]的长度转移为f[i - 1][j]和f[i][j - 1]的长度,即i的上一位置得到的最长公共子序列长度与当前位置j的前一个位置的最长公共子序列长度,当a[i] == b[j]是,我们还要比较f[i][j]与f[i - 1][j - 1] +1的长度,即a序列与b序列在前一位置的最长公共子序列长度向后扩展1的总长度与当前位置所能够得到的最长公共子序列的长度进行比较,更新最长公共子序列长度

对于LCIS,最长公共上升子序列,我们首先要解决的是公共,然后在解决上升,综合LIS和LCS解法,我们容易得到一个三重循环的写法。

F[I, j]表示A1~Ai与B1~Bj可以构成以Bj为结尾的LCIS的长度。

假设A0 = B0= -∞。

当Ai != Bj时,有f[i, j] = f[i – 1, j]

当Ai == Bj时,有

F[i, j] = max{f[i – 1, k]} + 1(0 <= k < j, Bk < Bj) = max(f[i – 1, k]) + 1(0 <= k <j, Bk < Ai)

这样我们很容易就能把代码写出来

for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) {
if(a[i] == b[j])
for(int k = ; k < j; ++k)
if(b[k] < a[i]) f[i][j] = max(f[i][j], f[i - ][k] + );
else f[i][j] = f[i - ][j];
}

但是三重循环显然不是一个优秀的解法,我们思考如何优化。

在转移过程中,我们把满足0 <= k < j并且Bk < Ai的k构成的集合称为f[i, j]进行状态转移时的决策集合,记为s[i, j],注意到当第二层循环j增加到m时,j是个定值, 这使得条件Bk小于Ai是固定的,也就是说对于决策集合s[i, j]中的k,Bk小于当前层的Ai是不会有变动的

因此,当变量j增加1是,k的范围变为0 <= k < j + 1,即整数j可能会进入新的决策集合,也就是说,我们只需要O(1)判断Bj < Ai是否满足即可,已经在决策集合中的数则一定不会被去除….(emmm好难懂,终于想通了),再详细的说就是,当j增加1时,对于k,实际取值变化只是右端多加了1,所以我在填充决策集合时,实际上只需要对刚刚增大的j值进行判断就行了,也就是直接判断Bj < Ai是否成立来判断能否加入决策集合

s(i, j +1) = <1> s(i, j) (Bj >= Ai)

<2> s(i, j) ∪ {j} (Bj < Ai)

所以上述状态转移方程只需要两重循环即可求解

 for(int i = ; i <= n; ++i) {
int val = ;//val是决策集合s(i, j)中f[i - 1][k]的最大值
if(b[] < a[i]) val = f[i - ][];//j = 1时,0可以作为b的取值
for(int j = ; j <= m; ++j) {
if(a[i] == b[j]) f[i][j] = val + ;
else f[i][j] = f[i - ][j];
if(b[j] < a[i]) val = max(val, f[i - ][j]);//j即将增大为j + 1,检查j能否进入决策集合
}
}

从这道题的优化中,我们可以总结到,在实现状态转移方程时,要注意观察决策集合的范围随着状态的变化情况,对于“决策集合中的元素只增多不减少”的情景,就可以像本体一样维护一个变量来记录决策集合的当前信息,避免重复扫描,把转移的复杂度降低一个量级

LCIS最长公共上升子序列的更多相关文章

  1. [CodeForces10D]LCIS(最长公共上升子序列) - DP

    Description 给定两个数列,求最长公共上升子序列,并输出其中一种方案. Input&Output Input 第一行一个整数n(0<n<=500),数列a的长度. 第二行 ...

  2. LCIS 最长公共上升子序列问题DP算法及优化

    一. 知识简介 学习 LCIS 的预备知识: 动态规划基本思想, LCS, LIS 经典问题:给出有 n 个元素的数组 a[] , m 个元素的数组 b[] ,求出它们的最长上升公共子序列的长度. 例 ...

  3. CF10D LCIS 最长公共上升子序列

    题目描述 This problem differs from one which was on the online contest. The sequence a1,a2,...,an a_{1}, ...

  4. LCIS(最长公共上升子序列)Vijos1264神秘的咒语

    描述 身为拜月教的高级间谍,你的任务总是逼迫你出生入死.比如这一次,拜月教主就派你跟踪赵灵儿一行,潜入试炼窟底. 据说试炼窟底藏着五行法术的最高法术:风神,雷神,雪妖,火神,山神的咒语.为了习得这些法 ...

  5. LCIS 最长公共上升子序列

    这个博客好久没写了,这几天为了准备清华交叉研究院的夏令营,在复习大一大二ACM训练时的一些基础算法,正好碰到LICS,发现没有写在博客里,那就顺便记录一下好了. 参考链接:http://blog.cs ...

  6. LCIS(最长公共上升子序列)模板

    求出LCIS并输出其路径. 1 #include <iostream> 2 #include <cstdio> 3 #include <string> 4 #inc ...

  7. CodeForces 10D. LCIS 最长公共上升子序列模板题 + 打印路径

    推荐一篇炒鸡赞的blog. 以下代码中有打印路径. #include <algorithm> #include <iostream> #include <cstring& ...

  8. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  9. 最长公共上升子序列(LCIS)

    最长公共上升子序列慕名而知是两个字符串a,b的最长公共递增序列,不一定非得是连续的.刚开始看到的时候想的是先用求最长公共子序列,然后再从其中找到最长递增子序列,可是仔细想一想觉得这样有点不妥,然后从网 ...

随机推荐

  1. Splunk学习与实践

      一.  Splunk公司与产品 美国Splunk公司,成立于2004年,2012年纳斯达克上市,第一家大数据上市公司,荣获众多奖项和殊荣.总部位于美国旧金山,伦敦为国际总部,香港设有亚太支持中心, ...

  2. 如何使用Navicat恢复数据库脚本

    Navicat 可以做数据库备份,当然也可以做数据库脚本恢复了.操作很简单. 1.连接需要恢复的数据库.鼠标右键点击,选择[运行SQL文件] 2.在弹出的窗口中选择sql文件,继续下一步即可. 余不赘 ...

  3. Backup and Restore MySQL Database using mysqlhotcopy

    mysqlhotcopy is a perl script that comes with MySQL installation. This locks the table, flush the ta ...

  4. Python爬虫学习笔记之爬取新浪微博

    import requests from urllib.parse import urlencode from pyquery import PyQuery as pq from pymongo im ...

  5. Linux 下打包报错:enospc (no space left on device)

    昨天打了个包,早上发现很多页面js加载404,一查原来打包的min文件夹下是空的,打包出错了 Error code: enospc du -sh * rm -f 文件名称 rm -rf 目录名称 前端 ...

  6. IE9,IE10 CSS因Mime类型不匹配而被忽略问题 (转)

    写页面的时候在chrome,fireforks等页面上显示正常,但是换成IE9,IE10之后就完全没有样式了,报错信息是CSS 因 Mime 类型不匹配而被忽略,下面与大家分享下这个问题的相关的回答 ...

  7. 对request.getSession(false)的理解(附程序员常疏忽的一个漏洞)

    本文属于本人原创,转载请注明出处:http://blog.csdn.net/xxd851116/archive/2009/06/25/4296866.aspx [前面的话] 在网上经常看到有人对req ...

  8. JAVA中List<Long> 转long[]的方法

    之前每次都是通过循环去写,感觉代码不够优雅,百度了一下,查到如下的写法,先记下来: List<Long> list = new ArrayList<Long>(); list. ...

  9. Idea工具点滴积累

    方法参数提示: keymap里面搜索 quick document,默认是F2

  10. bzoj 1996 DP

    我们可以发现,对于最后队列的一段区间[i,j],不论这一段区间如何插入,除了最后一个插入的对象外,剩下的对后续插入没有影响,这启发我们可以用DP来解决这一问题. w[i][j][0..1]代表区间[i ...