训练指南 UVALive - 3523 (双联通分量 + 二分图染色)
layout: post
title: 训练指南 UVALive - 3523 (双联通分量 + 二分图染色)
author: "luowentaoaa"
catalog: true
mathjax: true
tags:
- 双联通分量
- 二分图染色
- 图论
- 训练指南
Knights of the Round Table
题意
圆桌骑士。有的骑士之间是相互憎恨的,不能连坐,需要安排奇数个骑士围着桌子坐着,大于3个,求哪些骑士不可能安排到座位。
根据给定的关系,如果两个骑士之间没有憎恨关系,那么连边。最终就是求有多少个点无法位于奇圈之内。根据二分图可以知道二分图的都是偶数圈;所以只要先把联通分量求出来然后判断是否是二分图就行
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=1e3+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
bool A[maxn][maxn];
struct Edge{
int u,v;
};
///割顶 bccno 无意义
int pre[maxn],iscut[maxn],bccno[maxn],dfs_clock,bcc_cut;
vector<int>G[maxn],bcc[maxn];
stack<Edge>S;
int dfs(int u,int fa){
int lowu = pre[u] = ++dfs_clock;
int child = 0;
for(int i = 0; i < G[u].size(); i++){
int v =G[u][i];
Edge e = (Edge){u,v};
if(!pre[v]){ ///没有访问过
S.push(e);
child++;
int lowv = dfs(v, u);
lowu=min(lowu, lowv); ///用后代更新
if(lowv >= pre[u]){
iscut[u]=true;
bcc_cut++;bcc[bcc_cut].clear(); ///注意 bcc从1开始
for(;;){
Edge x=S.top();S.pop();
if(bccno[x.u] != bcc_cut){bcc[bcc_cut].push_back(x.u);bccno[x.u]=bcc_cut;}
if(bccno[x.v] != bcc_cut){bcc[bcc_cut].push_back(x.v);bccno[x.v]=bcc_cut;}
if(x.u==u&&x.v==v)break;
}
}
}
else if(pre[v] < pre[u] && v !=fa){
S.push(e);
lowu = min(lowu,pre[v]);
}
}
if(fa < 0 && child == 1) iscut[u] = 0;
return lowu;
}
void find_bcc(int n){
memset(pre, 0, sizeof(pre));
memset(iscut, 0, sizeof(iscut));
memset(bccno, 0, sizeof(bccno));
dfs_clock = bcc_cut = 0;
for(int i = 0; i < n;i++)
if(!pre[i])dfs(i,-1);
}
int odd[maxn], color[maxn];
bool bipartite(int u,int b){
for(int i = 0;i < G[u].size(); i++){
int v =G[u][i]; if(bccno[v] != b) continue;
if(color[v] == color[u])return false;
if(!color[v]){
color[v] = 3 - color[u];
if(!bipartite(v,b))return false;
}
}
return true;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int kase=0,n,m;
while(cin>>n>>m&&n){
for(int i=0;i<n;i++) G[i].clear();
memset(A,0,sizeof(A));
for(int i=0;i<m;i++){
int u,v;
cin>>u>>v;
u--;v--;
A[u][v]=A[v][u]=1;
}
for(int u=0;u<n;u++){
for(int v=u+1;v<n;v++){
if(!A[u][v]){
G[u].push_back(v);
G[v].push_back(u);
}
}
}
find_bcc(n);
memset(odd, 0, sizeof(odd));
for(int i = 1; i <= bcc_cut; i++){
memset(color, 0, sizeof(color));
for(int j = 0;j < bcc[i].size(); j++) bccno[bcc[i][j]]=i;
int u=bcc[i][0];
color[u]=1;
if(!bipartite(u,i))
for(int j = 0;j < bcc[i].size(); j++)odd[bcc[i][j]]=1;
}
int ans=n;
for(int i = 0; i < n; i++)if(odd[i])ans--;
cout<<ans<<endl;
}
return 0;
}
训练指南 UVALive - 3523 (双联通分量 + 二分图染色)的更多相关文章
- POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug
题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...
- 训练指南 UVALive - 4287 (强连通分量+缩点)
layout: post title: 训练指南 UVALive - 4287 (强连通分量+缩点) author: "luowentaoaa" catalog: true mat ...
- Spoj 2878 KNIGHTS - Knights of the Round Table | 双联通分量 二分图判定
题目链接 考虑建立原图的补图,即如果两个骑士不互相憎恨,就在他们之间连一条无向边. 显而易见的是,如果若干个骑士在同一个点数为奇数的环上时,他们就可以在一起开会.换句话说,如果一个骑士被一个奇环包含, ...
- lightoj 1300 边双联通分量+交叉染色求奇圈
题目链接:http://lightoj.com/volume_showproblem.php?problem=1300 边双连通分量首先dfs找出桥并标记,然后dfs交叉着色找奇圈上的点.这题只要求在 ...
- POJ - 2942 Knights of the Round Table (点双联通分量+二分图判定)
题意:有N个人要参加会议,围圈而坐,需要举手表决,所以每次会议都必须是奇数个人参加.有M对人互相讨厌,他们的座位不能相邻.问有多少人任意一场会议都不能出席. 分析:给出的M条关系是讨厌,将每个人视作点 ...
- la3523 白书例题 圆桌骑士 双联通分量+二分图
具体题解看大白书P316 #include <iostream> #include <algorithm> #include <vector> #include & ...
- 训练指南 UVALive - 5135 (双连通分量)
layout: post title: 训练指南 UVALive - 5135 (双连通分量) author: "luowentaoaa" catalog: true mathja ...
- poj2942(双联通分量,交叉染色判二分图)
题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. 思路:首先 ...
- POJ2942 Knights of the Round Table【Tarjan点双联通分量】【二分图染色】【补图】
LINK 题目大意 有一群人,其中有一些人之间有矛盾,现在要求选出一些人形成一个环,这个环要满足如下条件: 1.人数大于1 2.总人数是奇数 3.有矛盾的人不能相邻 问有多少人不能和任何人形成任何的环 ...
随机推荐
- poj 1753 Flip Game (dfs)
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 28805 Accepted: 12461 Descr ...
- 周记【距gdoi:117天】
国庆被“吞”了 图论还剩下平面图.分层图.欧拉图…… 是现实太残酷还是自己兴趣不够? 努力吧.
- Android中使用RadioButton代替ImageButton
画外音————好久没上来发文章了,这几个月一直忙着一些跟编程不沾边的事,拖了好久,现在还在持续中,顺利的话7月份应该能解放了..今天偶尔上来写一段番外篇性质的心得发现. 之前搞的Android项目,作 ...
- Educational Codeforces Round 55:A. Vasya and Book
A. Vasya and Book 题目链接:https://codeforc.es/contest/1082/problem/A 题意: 给出n,x,y,d,x是起点,y是终点,d是可以跳的格数,注 ...
- 2017福建省赛 FZU2272~2283
1.FZU2272 Frog 传送门:http://acm.fzu.edu.cn/problem.php?pid=2272 题意:鸡兔同笼通解 题解:解一个方程组直接输出就行 代码如下: #inclu ...
- zigbee ---- endpoint理解
很多资料将其翻译为“端点”,我们不如也这么叫. 在windows上使用不同的软件进行通信,数据包到达不同的应用的方法就是通过寻找IP地址和端口号来确定某一个应用的,也就是我们所说的五元组(源IP,目的 ...
- shell编程 if 注意事项
read -n 1 -p "Let's go(y or n):" if [ "$REPLY"x = "y"x -o "$REPLY ...
- java三
1,深复制与浅复制 浅复制:被复制对象的所有变量都含有与原来的对象相同的值,而所有的对其他对象的引用仍然指向原来的对象.换言之,浅复制仅仅复制所考虑的对象,而不复制它所引用的对象. 深复制:被复制对象 ...
- [BZOJ3275]Number解题报告|网络流
Description 有N个正整数,需要从中选出一些数,使这些数的和最大.若两个数a,b同时满足以下条件,则a,b不能同时被选1:存在正整数C,使a*a+b*b=c*c2:gcd(a,b)=1 这道 ...
- [bzoj4518][Sdoi2016]征途-斜率优化
Brief Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须 ...