旋转多边形是没有前途的,我们考虑旋转敌人,那么答案就是所有人的可行区间长度之和除以$2\pi$

首先对每个敌人找到那些旋转后会落到多边形上的角度,实际上就是圆和一些线段求交,解方程即可,注意判一下落在多边形端点上的情况

把角度排序,每相邻两个角度构成一个区间,在区间内随便取一个角度,把敌人旋转这个角度,判断敌人是否在多边形内,如果是那么整个区间都是可行的

旋转直接套公式:$\left[\matrix{x'\\y'}\right]=\left[\matrix{\cos\theta&-\sin\theta\\\sin\theta&\cos\theta}\right]\left[\matrix{x\\y}\right]$

判断点是否在多边形内:考虑站在这个点,按顺序望向多边形的每个顶点,如果转了$2\pi$弧度就在多边形里,如果转了$0$弧度就在多边形外

注意精度,算夹角时绝对不要用asin或acos,对判别式判断大小不能用eps

#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
typedef double du;
const du eps=1e-9,pi2=2*M_PI;
bool equ(du a,du b){return fabs(a-b)<eps;}
bool lt(du a,du b){return a-b<-eps;}
bool inr(du a,du b,du c){
	if(a>c)swap(a,c);
	return lt(a,b)&&lt(b,c);
}
struct point{
	du x,y;
	point(du a=0,du b=0){x=a;y=b;}
};
point operator-(point a,point b){return point(a.x-b.x,a.y-b.y);}
du dot(point a,point b){return a.x*b.x+a.y*b.y;}
du cr(point a,point b){return a.x*b.y-a.y*b.x;}
du len(point a){return sqrt(a.x*a.x+a.y*a.y);}
du dif(point a,point b){
	if(equ(len(a)*len(b),0))return 0;
	if(equ(cr(a,b),0))return lt(0,dot(a,b))?0:-M_PI;
	du f=atan2(b.y,b.x)-atan2(a.y,a.x);
	if(lt(cr(a,b),0)){
		if(lt(0,f))f-=pi2;
	}else if(lt(f,0))
		f+=pi2;
	return f;
}
void eq2(du a,du b,du c,du&d,du&x1,du&x2){
	d=b*b-4*a*c;
	if(d>=0){
		x1=(-b+sqrt(d))/(2*a);
		x2=(-b-sqrt(d))/(2*a);
	}
}
du ang[1010];
int M;
void chk(point u,point a,point b){
	du x1,x2,r;
	r=len(u);
	if(equ(r,len(a)))ang[++M]=dif(u,a);
	if(equ(a.x,b.x)){
		if(lt(r,a.x))return;
		x1=sqrt(r*r-a.x*a.x);
		x2=-x1;
		if(inr(a.y,x1,b.y))ang[++M]=dif(u,point(a.x,x1));
		if(inr(a.y,x2,b.y))ang[++M]=dif(u,point(a.x,x2));
	}else{
		du d,K,B;
		K=(b.y-a.y)/(b.x-a.x);
		B=a.y-K*a.x;
		eq2(K*K+1,2*K*B,B*B-r*r,d,x1,x2);
		if(d<0)return;
		if(inr(a.x,x1,b.x))ang[++M]=dif(u,point(x1,K*x1+B));
		if(inr(a.x,x2,b.x))ang[++M]=dif(u,point(x2,K*x2+B));
	}
}
point e[210],p[510];
int n,m;
#define gao(b,c) if(equ(cr(u-b,u-c),0))return 0;\
				 t+=dif(b-u,c-u);
bool inside(point u){
	du t=0;
	int i;
	for(i=1;i<m;i++){
		gao(p[i],p[i+1])
	}
	gao(p[m],p[1])
	return equ(t,pi2);
}
point rot(point a,du ang){
	return point(a.x*cos(ang)-a.y*sin(ang),a.x*sin(ang)+a.y*cos(ang));
}
#define chk2(a,b,c) if(inside(rot(a,(b+c)*.5)))ans+=(c-b)/pi2;
int main(){
	int i,j;
	du ans;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++)scanf("%lf%lf",&e[i].x,&e[i].y);
	for(i=1;i<=m;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
	ans=0;
	for(i=1;i<=n;i++){
		M=0;
		for(j=1;j<m;j++){
			chk(e[i],p[j],p[j+1]);
		}
		chk(e[i],p[m],p[1]);
		if(M<2){
			if(inside(e[i]))ans+=1;
		}else{
			sort(ang+1,ang+M+1);
			for(j=1;j<M;j++){
				chk2(e[i],ang[j],ang[j+1])
			}
			chk2(e[i],ang[M],ang[1]+pi2)
		}
	}
	printf("%.5lf",ans);
}

[LOJ6437]PKUSC的更多相关文章

  1. 【loj6437】 【PKUSC2018】 PKUSC 计算几何

    题目大意:给你一个m个点的简单多边形.对于每个点i∈[1,n],作一个以O点为原点且过点i的圆,求该圆在多边形内的圆弧长度/圆长. 其中n≤200,m≤500. 我们将n个点分开处理. 首先,我们要判 ...

  2. LOJ6437. 「PKUSC2018」PKUSC [计算几何]

    LOJ 思路 显然多边形旋转可以变成点旋转,不同的点的贡献可以分开计算. 然后就变成了要求一个圆在多边形内的弧长. 考虑把交点全都求出来,那么两个交点之间的状态显然是相同的,可以直接把圆弧上的中点的状 ...

  3. LOJ6437 PKUSC2018 PKUSC

    带劲的计算几何[这一定是我WC之前开的最后一道计几!!! 每个点画个圆然后看一下交点 然后判断是多边形内还是多边形外 这个就是取圆上中点然后射线法 eps我1e-8才过 不知道为啥有的人说只能开1e- ...

  4. [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC

    [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC 试题描述 九条可怜是一个爱玩游戏的女孩子. 最近她在玩一个无双割草类的游戏,平面上有 \(n\) 个敌人,每一个敌人的坐标为 ...

  5. PKUSC 2018 题解

    PKUSC 2018 题解 Day 1 T1 真实排名 Link Solution 考虑对于每一个人单独算 每一个人有两种情况,翻倍和不翻倍,他的名次不变等价于大于等于他的人数不变 设当前考虑的人的成 ...

  6. [LOJ 6435][PKUSC 2018]星际穿越

    [LOJ 6435][PKUSC 2018]星际穿越 题意 给定 \(n\) 个点, 每个点与 \([l_i,i-1]\) 之间的点建立有单位距离的双向边. \(q\) 组询问从 \(x\) 走到 \ ...

  7. [LOJ 6433][PKUSC 2018]最大前缀和

    [LOJ 6433][PKUSC 2018]最大前缀和 题意 给定一个长度为 \(n\) 的序列, 求把这个序列随机打乱后的最大前缀和的期望乘以 \(n!\) 后对 \(998244353\) 取膜后 ...

  8. [LOJ 6432][PKUSC 2018]真实排名

    [LOJ 6432][PKUSC 2018]真实排名 题意 给定 \(n\) 个选手的成绩, 选中其中 \(k\) 个使他们的成绩翻倍. 对于每个选手回答有多少种方案使得他的排名不发生变化. \(n\ ...

  9. Diary -「PKUSC 2021」游记

      出游回来自然而然(?)地进入生产低谷的兔子只能写写游记了 qwq. Day -1 实时反馈赛制不是为防止你被数据调戏,而是给你调戏数据的机会. --鲁迅   PKU 一贯的 \(32\) 发提交实 ...

随机推荐

  1. DES 加密解密

    [概念] 数据加密算法(Data Encryption Algorithm,DEA)是一种对称加密算法,很可能是使用最广泛的密钥系统,特别是在保护金融数据的安全中,最初开发的DEA是嵌入硬件中的.通常 ...

  2. oracle与mysql与sqlserver的分页

    假设当前是第PageNo页,每页有PageSize条记录,现在分别用Mysql.Oracle和SQL Server分页查询student表. 1.Mysql的分页查询: 1 SELECT 2 * 3 ...

  3. Pycharm 创建 Django admin 用户名和密码

    1.  问题 使用PyCharm  创建完Django 项目  想登录admin  页面   却不知道用户名和密码. 用的默认sqlit   2.解决办法   2.1 打开manage.py 控制界面 ...

  4. linux内存条排查

    已发现2个内存错误,应用名称(kernel:),日志内容(hangzhou-jishuan-DDS0248 kernel: sbridge: HANDLING MCE MEMORY ERROR han ...

  5. 使用命令wsimport生成WebService客户端

    使用命令wsimport生成WebService客户端 wsimpost命令有几个重要的参数: -keep:是否生成java源文件    -d:指定输出目录    -s:指定源代码输出目录    -p ...

  6. Binding and styling text to a RichTextBox in WPF

    http://www.codeproject.com/Articles/137209/Binding-and-styling-text-to-a-RichTextBox-in-WPF The Rich ...

  7. jsp分页完善版

    明天要考网络工程师了,而且这两天校运会,把那个分页的完善了下,明天考试,祈祷吧,我根本都没看书啊,所以只能去长见识了.100大洋啊,下个学期我想考考证了,不然以后出去麻烦了.呵呵,不多说还是说说自己对 ...

  8. 51nodeE 斜率最大

    题目传送门 这道题只要证明最佳解一定在相邻两个点之间的好啦 这个自己证一证就okay啦 而且我发现n方的算法可以过耶... #include<cstdio> #include<cst ...

  9. 2017年上海金马五校程序设计竞赛:Problem C : Count the Number (模拟)

    Description Given n numbers, your task is to insert '+' or '-' in front of each number to construct ...

  10. Splunk Power User认证

    课程介绍 | 通过 Splunk Fundamentals Part 1 课程考试 | 获取splunk certificate user 证书 | 课程为14节课+课后实验环境+课后习题 | 课程有 ...