Description

Input

Output

Sample Input

4 2

5 35 15 45

40 20 10 30

Sample Output

4

HINT

输入的2*n个数字保证全不相同。

还有输入应该是第二行是糖果,第三行是药片

Sol

先把两个数组排序,能够把题目的分析难度降低一些。

然后我们求出\(r[i]\)表示b中小于\(a[i]\)的最靠右的位置,这样dp的时候就能够\(O(1)\)转移了。

设\(f[i][j]\)表示考虑了i位,至少有j个满足a>b的方案数。

显然\(f[i][j]=f[i-1][j]+f[i-1][j-1]*max(0,r[i]-j+1)\)。

这样的方案数是“至少”,我们需要求的是“恰好”,所以需要容斥一波。

设\(g[i]\)表示恰好i个的方案数,那么我们的计算方法就是用全部情况减去不合法的情况。

显然全部情况是\(f[n][i]*(n-i)!\),阶乘就表示剩下的可以任意选择。

然后我们需要减去的是:\(\sum_{j=i+1}^{n}g[j]*C(j,i)\)

这个式子的意义是:对于每个恰好是j的方案的排列中,任意选择i个数字的方案数,也就是不合法的总方案数。

Code

#include <bits/stdc++.h>
using namespace std;
int n,m,a[2005],b[2005],f[2005][2005],g[2005],d[2005]={1},c[2005][2005],r[2005],P=1e9+9;
int main()
{
scanf("%d%d",&n,&m);m=(m+n)>>1;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);sort(a+1,a+n+1);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);sort(b+1,b+n+1);
for(int i=1,j=1;i<=n;r[i]=j-1,i++) for(;j<=n&&b[j]<a[i];j++);
for(int i=0,j;i<=2000;i++) for(c[i][0]=1,j=1;j<=i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1])%P;
for(int i=1;i<=2000;i++) d[i]=1ll*d[i-1]*i%P;
for(int i=0;i<=n;i++) f[i][0]=1;
for(int i=1;i<=n;i++) for(int j=1;j<=i;j++) f[i][j]=(f[i-1][j]+1ll*f[i-1][j-1]*max(r[i]-j+1,0)%P)%P;
for(int i=n,j;i>=m;i--) for(g[i]=1ll*f[n][i]*d[n-i]%P,j=i+1;j<=n;j++) g[i]=(g[i]-1ll*c[j][i]*g[j]%P+P)%P;
printf("%d\n",g[m]);
}

【BZOJ3622】已经没什么好害怕的了 容斥原理+dp的更多相关文章

  1. 洛谷4859 BZOJ3622 已经没什么好害怕的了(DP,二项式反演)

    题目链接: 洛谷 BZOJ 题目大意:有两个长为 $n$ 的序列 $a,b$,问有多少种重排 $b$ 的方式,使得满足 $a_i>b_i$ 的 $i$ 的个数比满足 $a_i<b_i$ 的 ...

  2. BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]

    3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...

  3. [BZOJ3622]已经没有什么好害怕的了:DP+容斥原理

    分析 说白了就是一道先DP再二项式反演的水题,然后被脑残博主把"多\(k\)组"看成了"糖果比药片能量大的组数恰好为\(k\)组",还改了各种奇怪的地方,最后看 ...

  4. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  5. BZOJ 3622 Luogu P4859 已经没有什么好害怕的了 (容斥原理、DP)

    题目链接 (Luogu) https://www.luogu.org/problem/P4859 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...

  6. [CF245H] Queries for Number of Palindromes (容斥原理dp计数)

    题目链接:http://codeforces.com/problemset/problem/245/H 题目大意:给你一个字符串s,对于每次查询,输入为一个数对(i,j),输出s[i..j]之间回文串 ...

  7. P4859 已经没有什么好害怕的了(dp+二项式反演)

    P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- ...

  8. 2018.07.13 [HNOI2015]落忆枫音(容斥原理+dp)

    洛谷的传送门 bzoj的传送门 题意简述:在DAG中增加一条有向边,然后询问新图中一共 有多少个不同的子图为"树形图". 解法:容斥原理+dp,先考虑没有环的情况,经过尝试不难发现 ...

  9. TC SRM498 Div1 1000PT(容斥原理+DP)

    [\(Description\)] 网格中每步可以走\((0,\cdots M_x,0\cdots M_y)\)中任意非零向量,有\(K\)种向量不能走,分别是\((r_1,r_1),(r_2,r_2 ...

随机推荐

  1. PHP文件操作(三)-文件的写入

    fwrite()  //对文件进行写入 fwrite(file,string,length)file:必选项,需要写入的文件string:必选项,规定要写入文件的字符串length:可选项,规定要写入 ...

  2. php学习之if

    <html> <head> <title>xxx</title> <style> #tian{ color:blue; float:left ...

  3. 2014.8.27 CAD数据结构

    Rwy表中存放所有物理跑道,主键rwy_id,但没有跑道中心点坐标 rwy_direction表中存放所有所有逻辑跑道号,也没有跑道入口坐标.同一rwy_id对应有2条记录 rwy_cline_poi ...

  4. XML注释与Description标签及Java:注解(Annotation)的关系

    NET中的规范标准注释(一) -- XML注释标签讲解 一.摘要 .Net允许开发人员在源代码中插入XML注释,这在多人协作开发的时候显得特别有用. C#解析器可以把代码文件中的这些XML标记提取出来 ...

  5. 不用jquery实现tab页切换,刷新,后退,前进状态自动维护 很好用

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. Mybatis工具Generator

    转自:http://www.cuiyongzhi.com/post/36.html MyBatis Generator(以下简称为MBG),可以逆向生成持久层的基本代码,而且mybatis的实现方案比 ...

  7. 13-EasyNetQ之发布者确认

    AMQP发布消息默认情况下是非事务性的,不能确保你的消息真正送达代理.AMQP可以去指定事务性发布,但是RabbitMQ这样会非常慢,我们没有让EasyNetQ API去支持此功能.为了高效的确保投递 ...

  8. Spring总结四:IOC和DI 注解方式

    首先我们要了解注解和xml配置的区别: 作用一样,但是注解写在Bean的上方来代替我们之前在xml文件中所做的bean配置,也就是说我们使用了注解的方式,就不用再xml里面进行配置了,相对来说注解方式 ...

  9. libevent源码深度剖析一

    libevent源码深度剖析一 ——序幕 张亮 1 前言 Libevent是一个轻量级的开源高性能网络库,使用者众多,研究者更甚,相关文章也不少.写这一系列文章的用意在于,一则分享心得:二则对libe ...

  10. Python04 range()方法的使用、turtle.textinput()方法和write()的使用、turtle.numinput()的使用

    1 range() 方法的使用 1.1 range方法介绍 range方法会返回一个range类型的对象,该对象会根据range方法的参数产生一些列整型数据 技巧01:range方法有三个参数,第一个 ...