【bzoj4836】二元运算 分治FFT
Description
定义二元运算 opt 满足
现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问。每次询问给定一个数字 c
你需要求出有多少对 (i, j) 使得 a_i opt b_j=c 。
Input
第一行是一个整数 T (1≤T≤10) ,表示测试数据的组数。
对于每组测试数据:
第一行是三个整数 n,m,q (1≤n,m,q≤50000) 。
第二行是 n 个整数,表示 a_1,a_2,?,a_n (0≤a_1,a_2,?,a_n≤50000) 。
第三行是 m 个整数,表示 b_1,b_2,?,b_m (0≤b_1,b_2,?,b_m≤50000) 。
第四行是 q 个整数,第 i 个整数 c_i (0≤c_i≤100000) 表示第 i 次查询的数。
Output
对于每次查询,输出一行,包含一个整数,表示满足条件的 (i, j) 对的个数。
Sample Input
2
2 1 5
1 3
2
1 2 3 4 5
2 2 5
1 3
2 4
1 2 3 4 5
Sample Output
1
0
1
0
0
1
0
1
0
1
Sol
首先一眼看上去有点像FFT,但是由于值域的限制我们不能直接做,考虑按权值分治,每次把A中小于mid的和B中大于mid的进行FFT,统计答案的时候记得加上l和mid+1,再把B反转,然后把A中大于mid的和B中小于mid的进行FFT,统计答案的时候记得右移一位。
细节:分治的时候len和memset的范围一定要按照当前区间长度来,否则T飞。
Code
#include <bits/stdc++.h>
#define pi acos(-1.0)
using namespace std;
int A[50005],B[50005],T,mx,x,n,m,q,len,i,j,k;long long ans[100005];
struct cp
{
double x,y;
cp(double x=0.0,double y=0.0):x(x),y(y){}
friend cp operator+(cp a,cp b){return cp(a.x+b.x,a.y+b.y);}
friend cp operator-(cp a,cp b){return cp(a.x-b.x,a.y-b.y);}
friend cp operator*(cp a,cp b){return cp(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
}C[131073],D[131073],w,wn,t;
void fft(cp *a,int n,int op)
{
for(i=k=0;i<n;i++){if(i>k) swap(a[i],a[k]);for(j=(n>>1);(k^=j)<j;j>>=1);}
for(k=2,wn=cp(cos(2*pi*op/k),sin(2*pi*op/k));k<=n;k<<=1,wn=cp(cos(2*pi*op/k),sin(2*pi*op/k)))
for(i=0,w=cp(1,0);i<n;i+=k,w=cp(1,0)) for(j=0;j<(k>>1);j++,w=w*wn)
t=a[i+j+(k>>1)]*w,a[i+j+(k>>1)]=a[i+j]-t,a[i+j]=a[i+j]+t;
if(op==-1) for(int i=0;i<n;i++) a[i].x/=n;
}
void solve(int l,int r)
{
if(l==r){ans[0]+=1ll*A[l]*B[l];return;}
int mid=(l+r)>>1;for(len=1;len<r-l+1;len<<=1);
memset(C,0,sizeof(cp)*len);memset(D,0,sizeof(cp)*len);
for(int i=l;i<=mid;i++) C[i-l].x=A[i];
for(int i=mid+1;i<=r;i++) D[i-mid-1].x=B[i];
fft(C,len,1);fft(D,len,1);
for(int i=0;i<len;i++) C[i]=C[i]*D[i];fft(C,len,-1);
for(int i=0;i<len;i++) ans[i+l+mid+1]+=1ll*(C[i].x+0.1);
memset(C,0,sizeof(cp)*len);memset(D,0,sizeof(cp)*len);
for(int i=mid+1;i<=r;i++) C[i-mid-1].x=A[i];
for(int i=l;i<=mid;i++) D[mid-i].x=B[i];
fft(C,len,1);fft(D,len,1);
for(int i=0;i<len;i++) C[i]=C[i]*D[i];fft(C,len,-1);
for(int i=0;i<len;i++) ans[i+1]+=1ll*(C[i].x+0.1);
solve(l,mid);solve(mid+1,r);
}
int main()
{
for(scanf("%d",&T);T--;)
{
memset(A,0,sizeof(A));memset(B,0,sizeof(B));memset(ans,0,sizeof(ans));
scanf("%d%d%d",&n,&m,&q);mx=0;
for(int i=1;i<=n;i++) scanf("%d",&x),A[x]++,mx=max(mx,x);
for(int i=1;i<=m;i++) scanf("%d",&x),B[x]++,mx=max(mx,x);
for(solve(0,mx);q--;) scanf("%d",&x),printf("%lld\n",ans[x]);
}
}
【bzoj4836】二元运算 分治FFT的更多相关文章
- [BZOJ4836]二元运算(分治FFT)
4836: [Lydsy1704月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 578 Solved: 202[Submit][Stat ...
- 【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT
题目描述 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使得 a_ ...
- bzoj 4836 [Lydsy1704月赛]二元运算 分治FFT+生成函数
[Lydsy1704月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 577 Solved: 201[Submit][Status][Di ...
- bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT
4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec Memory Limit: 128 MB Description 定义二元运算 opt 满足 现在给定一 ...
- BZOJ 4836: [Lydsy1704月赛]二元运算 分治FFT
Code: #include<bits/stdc++.h> #define ll long long #define maxn 500000 #define setIO(s) freope ...
- BZOJ4836 [Lydsy1704月赛]二元运算 分治 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8830036.html 题目传送门 - BZOJ4836 题意 定义二元运算$opt$满足 $$x\ opt\ y ...
- BZOJ4836: [Lydsy1704月赛]二元运算【分治FFT】【卡常(没卡过)】
Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
随机推荐
- kafka集群配置和java编写生产者消费者操作例子
kafka 安装 修改配置文件 java操作kafka kafka kafka的操作相对来说简单很多 安装 下载kafka http://kafka.apache.org/downloads tar ...
- 微信小程序API登录凭证(code),获得的用户登录态拥有一定的时效性
调用接口获取登录凭证(code)进而换取用户登录态信息,包括用户的唯一标识(openid) 及本次登录的 会话密钥(session_key).用户数据的加解密通讯需要依赖会话密钥完成. OBJECT参 ...
- 用CSS使图片上下左右都绝对居中于DIV
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- ubuntu下编译ffmpeg并用eclipse调试
一.下载ffnpeg源码 下载地址:http://ffmpeg.org/download.html 二.解决版本问题 可能之前你编译过ffmpeg,或者装过相关的库,那都要先卸载掉,否则用的时候会报一 ...
- oracle更改编码
背景:win764bit英文操作系统(支持中文) oracle11G默认安装 从ZHS16GBK字符集导入数据库 表现:plsql显示为乱码,所有汉字显示为“靠” 解决:1.查看并更改数据库的编码为Z ...
- ansible基本使用
ansible介绍 基础概念 ansible是个配置管理工具,可以批量处理一些任务.ansible只需要依赖ssh即可使用,而不需要在受管主机上安装客户端工具. ansible具有幂等性,即以结果为导 ...
- 模拟linux的内存分配与回收
模拟linux的内存分配与回收 要求 通过深入理解内存分配管理的三种算法,定义相应的数据结构,编写具体代码. 充分模拟三种算法的实现过程,并通过对比,分析三种算法的优劣. (1)掌握内存分配FF,BF ...
- 如何上传网站程序(文件浏览器上传网页、FileZilla上传网站程序)
问题场景: 网页制作完成后,程序需上传至虚拟主机. 注意事项: Windows系统的主机请将全部网页文件直接上传到FTP根目录,即 / . Linux系统的主机请将全部网页文件直接上传到 /htdoc ...
- 主机不能访问虚拟机中的web服务【解决方案】
百度了其它一些方法都不行,最后实在没辙,关了windows防火墙和Linux防火墙,居然能够访问了,我服. 总结一下,原来是Red Hat Linux 6.0防火墙没有开启端口80,开启的方法为(老版 ...
- mfs监控
web gui 监控 gui_info.jpg (143.72 KB, 下载次数: 83) gui_most.jpg (209.36 KB, 下载次数: 82) gui_master_info.jpg ...