传送门

矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况

考虑把每一块单独考虑然后方案再乘起来

但是这些奇怪的东西很不好考虑

所以暴力一点,直接拆成一个个小块

但是这样我们还要考虑到小矩形的限制,设 $f[i][S]$ 表示现在考虑第 $i$ 个小块,小矩形的限制满足的状态为 $S$ 时的方案数

发现这些小块不会跨过矩形,维护每个小块的限制(即这个块能填的最大的数)$Mx$,以及这个小块填最大数时,能使哪些小矩形满足限制 ($P$)

设小块的面积为 $S$,那么如果下一小矩形不填最大数,则转移到 $f[i+1][S]$,贡献方案数为 $(Mx[i+1]-1)^{S[i+1]}$

如果下一小矩形填最大数,则转移到 $f[i+1][S|P[i+1]]$,贡献为总方案数-不填最大数的方案数$Mx[i+1]^{S[i+1]}\ -\ (Mx[i+1]-1)^{S[i+1]}$

然后就是奇奇怪怪的离散化和预处理了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=,mo=1e9+;
int T,h,w,n,m;
int X1[N],X2[N],Y1[N],Y2[N],v[N];
int xp[N],yp[N],tx,ty,tot;
int tmp[N],t;
int f[N][N],S[N],Mx[N],P[N];
inline bool pd(int x,int y,int k) { return x>=X1[k]&&x<=X2[k]&&y>=Y1[k]&&y<=Y2[k]; }
//判断以(x,y)右上角的小块是否在矩形k中,因为离散化后小块不可能跨过矩形所以可以这样判断
inline int ksm(int x,int y)
{
int res=;
while(y)
{
if(y&) res=1ll*res*x%mo;
x=1ll*x*x%mo; y>>=;
}
return res;
}
int main()
{
//以下默认往右为大,往上为大
T=read();
while(T--)
{
memset(f,,sizeof(f)); memset(P,,sizeof(P));
xp[tx=]=; yp[ty=]=; tot=;
h=read(),w=read(),m=read(),n=read();
for(int i=;i<=n;i++)
{
X1[i]=read(),Y1[i]=read(),X2[i]=read(),Y2[i]=read(),v[i]=read();
xp[++tx]=X1[i]-,yp[++ty]=Y1[i]-;//注意-1,边界很重要,左下弄成开区间很重要!
xp[++tx]=X2[i],yp[++ty]=Y2[i];
}
xp[++tx]=h; yp[++ty]=w;
sort(xp+,xp+tx+); sort(yp+,yp+ty+);
for(int i=;i<=tx;i++) tmp[i]=xp[i]; t=tx; tx=;
for(int i=;i<=t;i++) if(i==||tmp[i]!=tmp[i-]) xp[++tx]=tmp[i];//离散化
for(int i=;i<=ty;i++) tmp[i]=yp[i]; t=ty; ty=;
for(int i=;i<=t;i++) if(i==||tmp[i]!=tmp[i-]) yp[++ty]=tmp[i];//离散化
for(int i=;i<=tx;i++)
for(int j=;j<=ty;j++)
{
tot++; Mx[tot]=m;
S[tot]=(xp[i]-xp[i-])*(yp[j]-yp[j-]);//小的边界是不包含的,即区间是左开右闭的,下开上闭的
for(int k=;k<=n;k++)
if(pd(xp[i],yp[j],k)) Mx[tot]=min(Mx[tot],v[k]);//处理Mx
for(int k=;k<=n;k++)
if(pd(xp[i],yp[j],k) && Mx[tot]==v[k])//处理P
P[tot]|=(<<k-);
}
int mx=(<<n)-; f[][]=;//DP
for(int i=;i<tot;i++)
{
int t1=ksm(Mx[i+]-,S[i+]),t2=(ksm(Mx[i+],S[i+])-t1+mo)%mo;
for(int j=;j<=mx;j++)
{
if(!f[i][j]) continue;
f[i+][j|P[i+]]=(f[i+][j|P[i+]]+1ll*f[i][j]*t2%mo)%mo;//此块填最大数
f[i+][j]=(f[i+][j]+1ll*f[i][j]*t1%mo)%mo;//此块不填最大数
}
}
printf("%d\n",f[tot][mx]);
}
}

P3813 [FJOI2017]矩阵填数的更多相关文章

  1. P3813 [FJOI2017]矩阵填数(组合数学)

    P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...

  2. [luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)

    题目链接: https://www.luogu.org/problemnew/show/P3813 题目: 给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w. ...

  3. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  4. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  5. bzoj5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  6. bzoj 5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  7. BZOJ5010 FJOI2017矩阵填数(容斥原理)

    如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...

  8. 【BZOJ】5010: [Fjoi2017]矩阵填数

    [算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...

  9. [FJOI2017]矩阵填数

    [Luogu3813] [LOJ2280] 写得很好的题解 \(1.\)离散化出每一块内部不互相影响的块 \(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩 ...

随机推荐

  1. Solidity oraclize 常用数据源

    1. 股票数据: https://blog.quandl.com/api-for-stock-data iextrading.com www.nowapi.com 中文 2. 外汇数据: https: ...

  2. Spring.Web.Mvc 注入(控制器属性注入)

    1.web.config配置 <?xml version="1.0" encoding="utf-8"?><!-- 有关如何配置 ASP.NE ...

  3. javascript中把一个数组的内容全部赋值给另外一个数组

    如:var a = [1,2,3,4];var b= [];b = a;这个不是把值赋值过去而是b作为a的引用,b改变的是a如何b指向的是一个新数组,a把元素值全部赋值过去? 1.普通数组可以使用   ...

  4. React+gulp+browserify模块化开发

    阅读本文需要有React的基础知识,可以在React 入门实例教程和React中文官网进行基础学习. 没有React基础也可以学习本文,本文主要不是学习React,而是gulp+browserify进 ...

  5. SharePoint Server 2013 Excel Web Access无法显示

    环境信息:SharePoint Server 2013 中文版,版本为15.0.4420.1017 Windows Server 2008 r2中文版 Sql Server 2012 问题描述:在Sh ...

  6. windowsPhone一些不常见控件

    1.InkPresenter:可以产生手写效果的控件. http://www.cnblogs.com/randylee/archive/2010/08/10/1791222.html 2.Thumb: ...

  7. T-SQL查询进阶--理解SQL Server中索引的概念,原理

    简介 在SQL Server中,索引是一种增强式的存在,这意味着,即使没有索引,sql server仍然可以实现应有的功能,但索引可以在大多数情况下提升查询性能,在OLAP(On line Trans ...

  8. 以太坊系列之十六:golang进行智能合约开发

    以太坊系列之十六: 使用golang与智能合约进行交互 以太坊系列之十六: 使用golang与智能合约进行交互 此例子的目录结构 token contract 智能合约的golang wrapper ...

  9. HBase基准性能测试报告

    作者:范欣欣 本次测试主要评估线上HBase的整体性能,量化当前HBase的性能指标,对各种场景下HBase性能表现进行评估,为业务应用提供参考.本篇文章主要介绍此次测试的基本条件,HBase在各种测 ...

  10. chkconfig的原理 和添加开机自启动的办法

    当我们使用 chkconfig --list的时候 都会又  123456 这样的级别. 当某个级别是 on 他就会开机启动,当他是off 的时候他就不会开机自启动. 那么这是什么原因呢?他的 原理是 ...