传送门

矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况

考虑把每一块单独考虑然后方案再乘起来

但是这些奇怪的东西很不好考虑

所以暴力一点,直接拆成一个个小块

但是这样我们还要考虑到小矩形的限制,设 $f[i][S]$ 表示现在考虑第 $i$ 个小块,小矩形的限制满足的状态为 $S$ 时的方案数

发现这些小块不会跨过矩形,维护每个小块的限制(即这个块能填的最大的数)$Mx$,以及这个小块填最大数时,能使哪些小矩形满足限制 ($P$)

设小块的面积为 $S$,那么如果下一小矩形不填最大数,则转移到 $f[i+1][S]$,贡献方案数为 $(Mx[i+1]-1)^{S[i+1]}$

如果下一小矩形填最大数,则转移到 $f[i+1][S|P[i+1]]$,贡献为总方案数-不填最大数的方案数$Mx[i+1]^{S[i+1]}\ -\ (Mx[i+1]-1)^{S[i+1]}$

然后就是奇奇怪怪的离散化和预处理了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=,mo=1e9+;
int T,h,w,n,m;
int X1[N],X2[N],Y1[N],Y2[N],v[N];
int xp[N],yp[N],tx,ty,tot;
int tmp[N],t;
int f[N][N],S[N],Mx[N],P[N];
inline bool pd(int x,int y,int k) { return x>=X1[k]&&x<=X2[k]&&y>=Y1[k]&&y<=Y2[k]; }
//判断以(x,y)右上角的小块是否在矩形k中,因为离散化后小块不可能跨过矩形所以可以这样判断
inline int ksm(int x,int y)
{
int res=;
while(y)
{
if(y&) res=1ll*res*x%mo;
x=1ll*x*x%mo; y>>=;
}
return res;
}
int main()
{
//以下默认往右为大,往上为大
T=read();
while(T--)
{
memset(f,,sizeof(f)); memset(P,,sizeof(P));
xp[tx=]=; yp[ty=]=; tot=;
h=read(),w=read(),m=read(),n=read();
for(int i=;i<=n;i++)
{
X1[i]=read(),Y1[i]=read(),X2[i]=read(),Y2[i]=read(),v[i]=read();
xp[++tx]=X1[i]-,yp[++ty]=Y1[i]-;//注意-1,边界很重要,左下弄成开区间很重要!
xp[++tx]=X2[i],yp[++ty]=Y2[i];
}
xp[++tx]=h; yp[++ty]=w;
sort(xp+,xp+tx+); sort(yp+,yp+ty+);
for(int i=;i<=tx;i++) tmp[i]=xp[i]; t=tx; tx=;
for(int i=;i<=t;i++) if(i==||tmp[i]!=tmp[i-]) xp[++tx]=tmp[i];//离散化
for(int i=;i<=ty;i++) tmp[i]=yp[i]; t=ty; ty=;
for(int i=;i<=t;i++) if(i==||tmp[i]!=tmp[i-]) yp[++ty]=tmp[i];//离散化
for(int i=;i<=tx;i++)
for(int j=;j<=ty;j++)
{
tot++; Mx[tot]=m;
S[tot]=(xp[i]-xp[i-])*(yp[j]-yp[j-]);//小的边界是不包含的,即区间是左开右闭的,下开上闭的
for(int k=;k<=n;k++)
if(pd(xp[i],yp[j],k)) Mx[tot]=min(Mx[tot],v[k]);//处理Mx
for(int k=;k<=n;k++)
if(pd(xp[i],yp[j],k) && Mx[tot]==v[k])//处理P
P[tot]|=(<<k-);
}
int mx=(<<n)-; f[][]=;//DP
for(int i=;i<tot;i++)
{
int t1=ksm(Mx[i+]-,S[i+]),t2=(ksm(Mx[i+],S[i+])-t1+mo)%mo;
for(int j=;j<=mx;j++)
{
if(!f[i][j]) continue;
f[i+][j|P[i+]]=(f[i+][j|P[i+]]+1ll*f[i][j]*t2%mo)%mo;//此块填最大数
f[i+][j]=(f[i+][j]+1ll*f[i][j]*t1%mo)%mo;//此块不填最大数
}
}
printf("%d\n",f[tot][mx]);
}
}

P3813 [FJOI2017]矩阵填数的更多相关文章

  1. P3813 [FJOI2017]矩阵填数(组合数学)

    P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...

  2. [luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)

    题目链接: https://www.luogu.org/problemnew/show/P3813 题目: 给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w. ...

  3. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  4. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  5. bzoj5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  6. bzoj 5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  7. BZOJ5010 FJOI2017矩阵填数(容斥原理)

    如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...

  8. 【BZOJ】5010: [Fjoi2017]矩阵填数

    [算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...

  9. [FJOI2017]矩阵填数

    [Luogu3813] [LOJ2280] 写得很好的题解 \(1.\)离散化出每一块内部不互相影响的块 \(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩 ...

随机推荐

  1. Jmeter调度器配置

    Jmeter的线程组设置里有一个调配器设置,用于设置该线程组下脚本执行的开始时间.结束时间.持续时间及启动延迟时间.当需要半夜执行性能测试时会用到这个功能. ps:设置调度器配置,需要将前面的循环次数 ...

  2. Docker学习笔记_安装和使用mysql

    一.系统环境和准备 1.宿主机OS:Win10 64位 2.虚拟机OS:Ubuntu18.04 3.操作账号:docker 二.安装 1.搜索mysql镜像:docker search mysql 2 ...

  3. ROS naviagtion analysis: costmap_2d--LayeredCostmap

    博客转自:https://blog.csdn.net/u013158492/article/details/50490490 在数据成员中,有两个重要的变量:Costmap2D costmap_和 s ...

  4. golang学习

    1. 学习资源列表 https://github.com/golang/go/wiki 2. 最快的入门方法 直接通过代码学习 https://tour.go-zh.org 3. go指南 https ...

  5. ssh时传递环境变量

    设置要传递的变量: -o SendEnv=Varname 但是不是每个都能传,受服务器上sshd_config里的下面两个选项的控制: AcceptEnv and PermitUserEnvironm ...

  6. ShopNc登录

  7. 4.python 系统批量运维管理器之paramiko模块

    paramiko paramiko是ssh服务最经常使用的模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接. paramiko实现ssh2不外乎两个角度:SSH客户端与服务端 SS ...

  8. .html与.text的异同

    .html与.text的方法操作是一样,只是在具体针对处理对象不同 .html处理的是元素内容,.text处理的是文本内容 .html只能使用在HTML文档中,.text 在XML 和 HTML 文档 ...

  9. Spring MVC Hibernate MySQL Integration(集成) CRUD Example Tutorial【摘】

    Spring MVC Hibernate MySQL Integration(集成) CRUD Example Tutorial We learned how to integrate Spring ...

  10. adb命令安装及卸载应用

    一.手机连接电脑,检测手机是否已开启授权并连接成功 adb devices 二.安装应用 adb install UYUN-CARRIER-Android.apk 三.卸载应用 1.查看应用包名 ad ...