【2-SAT】【并查集】NOIp模拟题 植树方案 题解
一个类似2-SAT的思想,但是简化了很多。只需要用到并查集实现。
题目描述
企鹅国打算种一批树。所谓树,就是由$N$个结点与$N-1$条边连接而成的连通无向图。企鹅国的国王对于这些树有下列要求:
1. 树没有指定根,但它的形态是给定的(即这$N-1$条边是给出的);
2. 树的每条边上可以放置一朵花(当然也可以不放置)
3. 共$Q$条约束,第$i$组约束规定:标号$u[i]$的结点到标号$v[i]$的结点的简单路径上,花的数量为奇数或偶数。现在,国王想事先知道他最多能种多少棵不一样的树(两棵树被视为不一样当且仅一棵树中某条边的放花情况与另一棵树不相同)。
输入输出格式
输入格式:
第$1$行两个整数$N,Q$;
接下来$N-1$行,每行两个整数$u,v$,表示$latex u,v$间存在一条边;
接下来$Q$行,每三个整数$u[i],v[i],k[i]$,若$k[i]$为$0$,表示$u[i]$到$v[i]$的简单路径的上花的个数为偶数, 否则为奇数。
输出格式:
一行一个整数,表示能种的不一样的树的种树,对$998244353$取模。
输入输出样例
输入样例#1:
5 3
1 2
1 3
2 4
2 5
1 4 0
1 5 1
1 3 0输出样例#1:
2说明
$20\%$的数据:$N, Q\le 20$;
$40\%$的数据:$N, Q\le 100$;
$70\%$的数据:$N, Q\le 5000$;
$100\%$的数据:$N, Q\le 100000, 0\le k[i]\le 1$。
题解:
这里两点之间的路径为奇数还是偶数与树上唯一一条路径有关,如下图,为了简化问题,我们把奇数和偶数定义为异或和为1和0。

两点间唯一路径就是这条黄色的路径。我们发现,要保证这条路径的异或和等于给定值,那么它们分别到根的异或和的异或值也是等于给定值的,因为$x\mathrm{xor} x=0$。因此要满足$x$到$y$这条路径的异或和等于给定值,那么只要满足两个点到根的异或和相异或等于给定值就可以了,也就相当于把上面重合的地方消掉了。
问题转化为异或,我们就不用关心树上的关系了也就是说这棵树废掉了。只需要给每个点一个到根的异或和(0/1)就可以了。
那么根据给出的询问信息,我们需要知道哪些点必须和哪些点到根的异或和相同,哪些点和哪些点相反。我们要把每个点拆成两个部分,一部分关联相同,另一部分关联的可以不同。样例构造出来就是这样:

那么一个连通块就代表了同一种到根的异或和,一对连通块(可以发现连通块总是对称的)代表了一对相反的到根的异或和。而每个节点真正到根的异或和是不带'的节点所在的连通块。因此我们只需要保证每个连通块取相同的值,每对连通块取对应的值就可以了。而每对连通块都有两种取值选择,如果相反,就是01/10,如果相同,就是00/11。那么我们一共有2连通块对数种选择。不过有一点要注意,1到根的异或和一定是0,所以有一组是不能任选的。所以我们有2连通块对数-1种选择。
判断连通块个数,用并查集就好了。
Code:
#include<cstdio>
#include<cstring>
int s[200100];
int my_find(int x)
{
if(s[x]==x)
return x;
return s[x]=my_find(s[x]);
}
void my_union(int x,int y)
{
s[my_find(y)]=my_find(x);
}
bool app[200100];
int qpow(int x,int y)
{
long long ans=1,m=x;
while(y)
{
if(y&1)
ans*=m;
ans%=998244353;
m*=m;
m%=998244353;
y>>=1;
}
return ans;
}
int main()
{
int n,q;
int u,v,w;
scanf("%d%d",&n,&q);
for(int i=1;i<n;++i)
{
s[i]=i;
scanf("%d%d",&u,&v);//可以直接过滤掉
}
for(int i=n;i<=2*n;++i)
s[i]=i;
for(int i=1;i<=q;++i)
{
scanf("%d%d%d",&u,&v,&w);
if(!w)
{
my_union(u,v);//上面图片连边的过程
my_union(u+n,v+n);
}
else
{
my_union(u,v+n);
my_union(u+n,v);
}
}
int cnt=0;
for(int i=1;i<=2*n;++i)
if(!app[my_find(i)])
{
app[my_find(i)]=1;
++cnt;
}
printf("%d\n",qpow(2,cnt-1>>1));//因为所有都统计了,所以要减1除以2
return 0;
}
【2-SAT】【并查集】NOIp模拟题 植树方案 题解的更多相关文章
- [Noip模拟题]统计方案
题目并不难,想一下就会了,我真的智商持续下降,取模情况下做除法我都没想到逆元. 总之想到逆元就好写了,还是\(meet\ in\ the\ middle\)裸题,数组开不下用\(hash/map\)存 ...
- 【BZOJ1998】[HNOI2010]物品调度(并查集,模拟)
[BZOJ1998][HNOI2010]物品调度(并查集,模拟) 题面 BZOJ,为啥这题都是权限题啊? 洛谷 题解 先不管\(0\)位置是个空,把它也看成一个箱子.那么最终的答案显然和置换循环节的个 ...
- poj 2236:Wireless Network(并查集,提高题)
Wireless Network Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 16065 Accepted: 677 ...
- poj 2524:Ubiquitous Religions(并查集,入门题)
Ubiquitous Religions Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 23997 Accepted: ...
- poj 1611:The Suspects(并查集,经典题)
The Suspects Time Limit: 1000MS Memory Limit: 20000K Total Submissions: 21472 Accepted: 10393 De ...
- hrbustoj 1073:病毒(并查集,入门题)
病毒Time Limit: 1000 MS Memory Limit: 65536 KTotal Submit: 719(185 users) Total Accepted: 247(163 user ...
- 【入门OJ】2003: [Noip模拟题]寻找羔羊
这里可以复制样例: 样例输入: agnusbgnus 样例输出: 6 这里是链接:[入门OJ]2003: [Noip模拟题]寻找羔羊 这里是题解: 题目是求子串个数,且要求简单去重. 对于一个例子(a ...
- NOIP模拟题汇总(加厚版)
\(NOIP\)模拟题汇总(加厚版) T1 string 描述 有一个仅由 '0' 和 '1' 组成的字符串 \(A\),可以对其执行下列两个操作: 删除 \(A\)中的第一个字符: 若 \(A\)中 ...
- 9.9 NOIP模拟题
9.9 NOIP模拟题 T1 两个圆的面积求并 /* 计算圆的面积并 多个圆要用辛普森积分解决 这里只有两个,模拟计算就好 两圆相交时,面积并等于中间两个扇形面积减去两个三角形面积 余弦定理求角度,算 ...
随机推荐
- 面试题:java实例变量,局部变量,类变量 背1
一.实例变量 也叫对象变量.类成员变量:从属于类由类生成对象时,才分配存储空间,各对象间的实例变量互不干扰,能通过对象的引用来访问实例变量.但在Java多线程中,实例变量是多个线程共享资源,要注意同步 ...
- c语言实践 数字特征值
这题的要求是这样的: 这题我没做出来,我大概思路是这样的,根据输入的数字,把这个数字的每一位都分离出来,然后判断奇数还是偶数,再判断序是奇数还是偶数,最后两个奇偶性比较,输出1还是0,这个输出的1和0 ...
- osm2pgsql windows “illegal option -W” error
新版本不支持 解决: 修改pg_hba.conf的METHOD为trust 参考:http://stackoverflow.com/questions/15510428/osm2pgsql-windo ...
- CSS3 grayscale滤镜图片变黑白
1. 使整个页面的图片都变成灰色的,代码如下. html{ font-size: 100%; -webkit-text-size-adjust: none; -ms-text-s ...
- oracle数据库登录
在做以下操作时,要确保你的数据库环境已经正确安装完成.数据库在实际应用中是比较多的,我们测试人员经常会在前台造一些测试数据,在后台数据库进行验证,当然,不局限于此,数据库也可以作为一个专项测试来谈.反 ...
- 编译boost,去掉不使用的组件
说明:下面内容仅针对Linux环境(boost官网为:http://www.boost.org/,可从这里下载它的源代码包,这里要求下载.tar.gz包,而非.7z..zip或bz2包). 在当前目录 ...
- portableDFS-可便携的分布式文件系统
PPT下载(因附件大小有限制,删除了PPT中的隐藏页,如需完整版本,请转到it168文库下载):portableDFS-可便携的分布式文件系统.ppt 完整版本请上这里下载:http://wenku. ...
- JAVA WEB第0课
在这学期内要掌握JAVA WAB高级网站开发的所有知识,并可以实际运用到.每周将花费20小时左右的时间来学习此门课程,每一天,在当天其他课程任务完成后将开始学习该课程,具体时间要看当天 ...
- Stomp与Jackson
读取Stomp消息的类在StompDecoder中,org.springframework.messaging.simp.stomp.StompDecoder. Jackson把json转对象是在如下 ...
- C# - dynamic 特性
dynamic是FrameWork4.0的新特性.dynamic的出现让C#具有了弱语言类型的特性.编译器在编译的时候不再对类型进行检查,编译期默认dynamic对象支持你想要的任何特性. 比如,即使 ...