【BZOJ2870】最长道路tree

Description

H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样。每个路口都有很多车辆来往,所以每个路口i都有一个拥挤程度v[i],我们认为从路口s走到路口t的痛苦程度为s到t的路径上拥挤程度的最小值,乘上这条路径上的路口个数所得的积。现在请你求出痛苦程度最大的一条路径,你只需输出这个痛苦程度。
简化版描述:
给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大。
其中链长度定义为链上点的个数。

Input

第一行N
第二行N个数分别表示1~N的点权v[i]
接下来N-1行每行两个数x、y,表示一条连接x和y的边

Output

一个数,表示最大的痛苦程度。

Sample Input

3
5 3 5
1 2
1 3

Sample Output

10

【样例解释】
选择从1到3的路径,痛苦程度为min(5,5)*2=10

HINT

100%的数据n<=50000
其中有20%的数据树退化成一条链
所有数据点权<=65536
Hint:建议答案使用64位整型

题解:我们采用树形DP版本的点分治。对于当前的分治中心x,我们依次遍历它的每个儿子的子树,每访问到一个点y,我们记录y到x路径上的权值最小值min和长度len,然后在树状数组中找到:在以前的子树中,min>=当前min的len的最大值,然后用min*(len+当前len)更新答案。

这样正着反着做两遍即可。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=50010;
typedef long long ll;
int n,m,cnt,now,tot,mn,rt;
int to[maxn<<1],next[maxn<<1],head[maxn],siz[maxn],v[maxn],s[70000],vis[maxn],tim[70000],p[maxn];
ll ans;
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void getrt(int x,int fa)
{
siz[x]=1;
int i,tmp=0;
for(i=head[x];i!=-1;i=next[i]) if(!vis[to[i]]&&to[i]!=fa) getrt(to[i],x),siz[x]+=siz[to[i]],tmp=max(tmp,siz[to[i]]);
tmp=max(tmp,tot-siz[x]);
if(tmp<mn) rt=x,mn=tmp;
}
inline int query(int x)
{
x++;
int i,ret=0;
for(i=x;i<=m;i+=i&-i)
{
if(tim[i]<now) tim[i]=now,s[i]=0;
ret=max(ret,s[i]);
}
return ret;
}
inline void updata(int x,int val)
{
x++;
for(int i=x;i;i-=i&-i)
{
if(tim[i]<now) tim[i]=now,s[i]=0;
s[i]=max(s[i],val);
}
}
void ask(int x,int fa,int dep,int sn)
{
sn=min(sn,v[x]),ans=max(ans,(ll)(dep+query(sn))*sn);
for(int i=head[x];i!=-1;i=next[i]) if(!vis[to[i]]&&to[i]!=fa) ask(to[i],x,dep+1,sn);
}
void change(int x,int fa,int dep,int sn)
{
sn=min(sn,v[x]),updata(sn,dep);
for(int i=head[x];i!=-1;i=next[i]) if(!vis[to[i]]&&to[i]!=fa) change(to[i],x,dep+1,sn);
}
void solve(int x)
{
vis[x]=1;
int i;
now++,p[0]=0;
for(i=head[x];i!=-1;i=next[i]) if(!vis[to[i]]) p[++p[0]]=to[i];
for(i=1;i<=p[0];i++) ask(p[i],x,2,v[x]),change(p[i],x,1,v[x]);
now++;
for(i=p[0];i>=1;i--) ask(p[i],x,2,v[x]),change(p[i],x,1,v[x]);
for(i=head[x];i!=-1;i=next[i]) if(!vis[to[i]]) tot=siz[to[i]],mn=1<<30,getrt(to[i],x),solve(rt);
}
inline void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
n=rd();
int i,a,b;
for(i=1;i<=n;i++) v[i]=rd(),m=max(m,v[i]+1);
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a);
tot=n,mn=1<<30,ans=m-1,getrt(1,0),solve(rt);
printf("%lld",ans);
return 0;
}

【BZOJ2870】最长道路tree 点分治+树状数组的更多相关文章

  1. bzoj2870最长道路tree——边分治

    简化版描述: 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数.   有几个不同的做法: 1.sort+并查集+树的直径.边从大到小加入 ...

  2. 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组

    [BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...

  3. 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组

    题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...

  4. BZOJ_2253_[2010 Beijing wc]纸箱堆叠 _CDQ分治+树状数组

    BZOJ_2253_[2010 Beijing wc]纸箱堆叠 _CDQ分治+树状数组 Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , , 之后, ...

  5. BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组

    BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组 Description        给定N个数对(xi, yi),求最长上升子 ...

  6. LOJ3146 APIO2019路灯(cdq分治+树状数组)

    每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...

  7. BZOJ_3262_陌上花开_CDQ分治+树状数组

    BZOJ_3262_陌上花开_CDQ分治+树状数组 Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),用三个整数表示. 现在要对每朵花评级,一朵花的级别是它拥有的 ...

  8. BZOJ 1176 Mokia CDQ分治+树状数组

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1854  Solved: 821[Submit][St ...

  9. 【bzoj3262】陌上花开 CDQ分治+树状数组

    题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...

随机推荐

  1. Excel 将换行符替换为空

          Step1:按快捷键Ctrl+H,打开"查找和替换"对话框:     Step2:选择"查找内容"后的文本框,按住Alt键,在数字键盘中输入&quo ...

  2. 【C++基础 03】do...while(0)妙用

    我的主题是,有时候知道一些细节会让你写出更好的代码. ============================================ 之前学coocs2d-x的时候,发现有非常多do...w ...

  3. 【DB2】对两列分组之后判断另外一列是否有重复

    建立表数据如下: ),sex ),sex_nm ),OWER ),TYPE ),TYPE_NM )); ,','水果'), (,','水果'), (,','水果'), (,','水果'), (,',' ...

  4. Altium Designer 10 | 常用库及部分元件名中英文对照表

    ———————————————————————————————————————————— 常用库及部分元件名中英文对照表 - - - - - - - - - - - - - - - - - - - - ...

  5. IOS下拉放大图片

    代码地址如下:http://www.demodashi.com/demo/11623.html 一.实现效果图 现在越来越多的APP中存在下拉放大图片的效果,今天贡献一下我的实现这种方法的原理,和我遇 ...

  6. ios 自动布局水平跟垂直居中

    [view addConstraint:[NSLayoutConstraint constraintWithItem:segment attribute:NSLayoutAttributeCenter ...

  7. Android解决button反复点击问题

    public class BaseActivity extends Activity { protected boolean isDestroy; //防止反复点击设置的标志.涉及到点击打开其它Act ...

  8. 内核调试神器SystemTap — 探測点与语法(二)

    a linux trace/probe tool. 官网:https://sourceware.org/systemtap/ 探測点 SystemTap脚本主要是由探測点和探測点处理函数组成的,来看下 ...

  9. TCP四次挥手断开连接详解

    TCP四次挥手. 数据传输结束后,通信的双方都可释放连接.现在A和B都处于ESTABLISHED状态.A的应用程序先向TCP发出连接释放报文段,主动关闭TCP连接.A把连接释放报文段的首部FIN置为1 ...

  10. 82. Remove Duplicates from Sorted List II【Medium】

    82. Remove Duplicates from Sorted List II[Medium] Given a sorted linked list, delete all nodes that ...