开源TSDB简介--Druid

Druid是一个以Java编写的开源分布式列式数据存储。 Druid的目标是快速提取大量事件数据,并提供低延迟的查询。
德鲁伊的名字来源于许多角色扮演游戏中的变形德鲁伊角色,以表示其系统结构可以为解决不同类型数据问题而灵活改变。 Druid通常用于OLAP(Online analytical processing)应用程序来分析大量的实时和历史数据。

Architecture

为了方便使用以及cloud-friendly,Druid拥有一个多进程、分布式架构。 Druid按功能分为多种node,每个类型node都可以独立配置和扩展,为Druid群集提供最大的灵活性。 该设计还提供增强的容错能力:一个组件的中断不会立即影响其他组件。
Druid的node类型包括:

  • Historical - 处理存储和查询历史数据的进程,其从deep storage中下载segments并响应有关这些数据的查询,Historical不接受数据写入操作。
  • MiddleManager - 处理新的数据写入的进程,其负责从外部数据源获取数据生成Druid segments并写入集群。
  • Broker - 代理查询请求的进程,其从客户端接受查询请求,并转发给Historicals和MiddleManagers,并在收到查询结果后进行合并后返回给客户端。
  • Coordinator - 观察和协调Historical集群的进程,其负责分配segments到指定的servers,并保证segments在Historicals上的数据均衡。
  • Overlord - 观察和协调MiddleManager集群的进程,其负责分配数据写入任务给MiddleManagers并协调segments的发布。
  • Router - 可选进程,用于在Brokers、Overlords和Coordinators之前提供一个统一的API网关。如果没有部署Router,则直接和Brokers、Overlords和Coordinators进行通讯。

如下图所示为Druid的架构图:

Druid的架构将服务划分的比较细,有利于动态扩展和在云上部署。但个人觉得略显复杂的架构,并不是很方便部署和运维,尤其是其依赖了过多的外部组件。

Deployment

Druid各个node进程可以单独部署或者合设到同一台机器上,一个常用的部署方式:

  • "Data" servers - Historical + MiddleManager
  • "Query" servers - Broker + (optionally) Router
  • "Master" servers - Coordinator + Overlord + ZooKeeper

此外,Druid还依赖3个外部组件:

  • Deep storage - 在不同的Druid server共享数据文件的存储,通常使用分布式存储如S3或者HDFS。Druid使用Deep storage来存储所有写入的数据。
  • Metadata store - 在不同的Druid server共享metadata的存储,通常使用传统的RDBMS,如PostgreSQL或者MySQL。
  • ZooKeeper - 用于服务发现、协调和leader选举。

Datasources and Segments

Druid将数据存储在"datasources"里,相当于传统RDBMS的表格。每个datasource用时间进行分区(可选其他属性进行进一步分区)。每个时间范围(如按天分区,则时间范围为一天)称为一个"chunk" 。在一个chunk里,数据进一步分区为一个或多个"segments"。每个segment是一个单独文件,存储大约几百万行数据。

一个datasource可能包含从几个segments到几百万几个segments。每个segment由MiddleManager创建,然后经过如下步骤的处理以生成紧凑的文件并支持快速查询:

  • 转换成columnar列式格式
  • 使用位图索引进行索引查询
  • 使用各种算法进行压缩
  • 进行字符串编码,使用UID代替string字符串进行存储,节约存储空间
  • 将位图索引进行压缩
  • 所有列进行类型感知的压缩

Segments周期性的提交和发布,此时他们写入Deep storage,并不允许再修改,并从MiddleManager转移到Historical。该Segment对应的一条记录写入到metadata store。该记录用一些bits来描述segment的属性,如segment的schema、大小以及其所在deep storage位置。这些信息都是Coordinator需要用到的。

Query

收到查询请求后,Broker根据请求先定位到哪些segments可能包含查询需要的数据,然后根据segments定位并发送请求到对应的Historicals和MiddleManagers。然后Historical/MiddleManager进程查询获取具体的数据并返回结果。Broker最后将查询结果汇聚后返回给调用者。

Broker pruning(裁剪)是Druid限制每个查询请求需要扫描的数据量的重要方式,但它不是唯一方法。过滤器提供了更细粒度的裁剪方法,每个Segment内的索引结构可以帮助Druid过滤出需要查询的行。这样Druid可以只读取匹配了查询过滤器的行,从而跳过不需要读取的行。
所以Druid通过如下3个方法提供查询的性能:

  • 裁剪定位查询需要扫描的segments
  • 在segment内,通过索引定位需要查询的行
  • 在segment内,只读取查询相关的行和列

参考

druid design

开源TSDB简介--Druid的更多相关文章

  1. 其他主流开源硬件简介BeagleBone Black快速入门

    其他主流开源硬件简介BeagleBone Black快速入门 1.3 其他主流开源硬件简介 开源硬件种类繁多,但主要有两款开源硬件常与BeagleBone比较.它们就是Arduino和Raspberr ...

  2. 开源GIS简介

    原文 开源GIS C++开源GIS中间件类库: GDAL(栅格)/OGR(矢量)提供了类型丰富的读写支持 GEOS(Geometry Engine Open Source)是基于C++的空间拓扑分析实 ...

  3. MIUI6&7桌面角标开源代码简介

    MIUI6&7桌面角标开源代码简介 MIUI6&7上重新设计了桌面app图标的角标显示,基本规则如下: 一.基本介绍 1.默认的情况 当app 向通知栏发送了一条通知 (通知不带进度条 ...

  4. apache基金会开源项目简介

    apache基金会开源项目简介   项目名称 描述 HTTP Server 互联网上首屈一指的HTTP服务器 Abdera Apache  Abdera项目的目标是建立一个功能完备,高效能的IETF ...

  5. GitHub 上排名前 100 的 IOS 开源库简介

    主要对当前 GitHub 排名前 100 的项目做一个简单的简介, 方便初学者快速了解到当前 Objective-C 在 GitHub 的情况. 项目名称 项目信息 1. AFNetworking 作 ...

  6. [转]六款值得推荐的android(安卓)开源框架简介

    本文转自:http://www.jb51.net/article/51052.htm .volley 项目地址 https://github.com/smanikandan14/Volley-demo ...

  7. 6个值得推荐的Android开源框架简介(转)

    虽然我们在做app的时候并不一定用到框架,但是一些好框架的思想是非常有学习价值的 1.volley 项目地址 https://github.com/smanikandan14/Volley-demo  ...

  8. 六款值得推荐的android(安卓)开源框架简介(转)

    1.volley 项目地址 https://github.com/smanikandan14/Volley-demo (1)  JSON,图像等的异步下载: (2)  网络请求的排序(scheduli ...

  9. 几款值得推荐的android(安卓)开源框架简介

    技术不再多,知道一些常用的.不错的就够了. 该文章自有需要的时候,mark一下. 顺序不代表排名,根据自己需求进行选择即可. 1.volley 项目地址 https://github.com/sman ...

随机推荐

  1. 接上一篇,Springcloud使用feignclient远程调用服务404 ,为什么去掉context-path后,就能够调通

    一.问题回顾 如果application.properties文件中配置了 #项目路径 server.servlet.context-path=/pear-cache-service 则feigncl ...

  2. 「BZOJ 3218」 a + b Problem

    题目链接 戳我 \(Solution\) 题目为什么是\(a\ +\ b\ Problem\)啊?这和题面半毛钱关系都没有. 现在来讲一下这题的解法吧,我们首先看看没有奇怪的方格这一个条件吧. 其实没 ...

  3. vs2015+opencv3.3.1 实现 c++ 双边滤波器(Bilateral Filter)

    #include <opencv2\highgui\highgui.hpp> #include <iostream> #include<vector> using ...

  4. linux安装配置阿里云的yum源和python3

    一.yum源理解 yum源仓库的地址 在/etc/yum.repos.d/,并且只能读出第一层的repo文件 yum仓库的文件都是以.repo结尾的 二.下载阿里云的.repo仓库文件 ,放到/etc ...

  5. Linux 意外操作后如何进行数据抢救

    Linux 意外操作后如何进行数据抢救 在 GUI 中使用  shift + delete  组合键或是 CLI 下使用 rm -rf 删除选项,这个文件并没有从硬盘(或是其它存储设备)上彻底销毁.当 ...

  6. 在StoryBoard对UICollectionViewCell 进行Autolayout是遇到的Xcode6.01的BUG

    使用Sb对UICollectionViewCell 的内容进行Autolayout约束时候,发现了一个Xcode6.01的BUG,就是你对UICollectionCell约束完了之后,在模拟器上现实的 ...

  7. ajax返回数据成功 却进入error方法

    应该是dataType的原因,dataType为json,但是返回的data不是json格式 于是将dataType:"json"去掉就ok了

  8. python pika简单实现RabbitMQ通信

    Windows上安装及启动RabbitMQ https://blog.csdn.net/hzw19920329/article/details/53156015 安装python pika库 pip ...

  9. Qt 学习之路 2(40):隐式数据共享

    Qt 学习之路 2(40):隐式数据共享 豆子 2013年1月21日 Qt 学习之路 2 14条评论 Qt 中许多 C++ 类使用了隐式数据共享技术,来最大化资源利用率和最小化拷贝时的资源消耗.当作为 ...

  10. bytes和str之间的转换

    1.方法:decode解码(二进制转换成字符串) encode与上相反