Floyd 算法详解
Floyd-Warshall
Floyd算法,是一种著名的多源最短路算法。
核心思想:
用邻接矩阵存储图,核心代码为三重循环,第一层枚举中间点k,二三层分别枚举起始点i与目标点j。然后判断经过中间点k后,i与j间的路程是否会减小。如果是,就更新i,j之间的最短路。
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
需要注意的是,为了保证更新成功,需要将e数组初始化为无穷大。同时为了防止程序做无意义的到自己的最短路,将每个节点到本身的距离初始化为0。
算法复杂度:
该算法的空间复杂度为n^2(不算优秀,但勉强接受),时间复杂度O(n^3)(呵呵)。
完整代码:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int inf=;
int n,m,x,y,z,s;
int dis[][];
int main()
{
scanf("%d%d%d",&n,&m,&s);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(i!=j) dis[i][j]=inf;
else dis[i][j]=;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
dis[x][y]=dis[y][x]=z;
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(dis[i][k]+dis[k][j]<dis[i][j])
dis[i][j]=dis[i][k]+dis[k][j];
for(int i=;i<=n;i++)
printf("%d ",dis[s][i]);
return ;
}
算法优化:
for(int k = ; k <= n; k++)
for(int i = ; i <= n; i++)
for(int j = ; j <= i; j++)
dis[i][j] = min(dis[i][j], dis[i][k]+dis[k][j]),
dis[j][i] = dis[i][j];
这里利用了矩阵的对称性,只更新一半矩阵即可。但整体时间复杂度还是不够理想,依然是O(n^3)。所以通常n较大时不考虑此算法。
Floyd 算法详解的更多相关文章
- 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?
简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...
- 最短路径Dijkstar算法和Floyd算法详解(c语言版)
博客转载自:https://blog.csdn.net/crescent__moon/article/details/16986765 先说说Dijkstra吧,这种算法只能求单源最短路径,那么什么是 ...
- Floyd算法详解
Floyd本质上使用了DP思想,我们定义\(d[k][x][y]\)为允许经过前k个节点时,节点x与节点y之间的最短路径长度,显然初始值应该为\(d[k][x][y] = +\infin (k, x, ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- 【转】AC算法详解
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
随机推荐
- 深入理解java线程池—ThreadPoolExecutor
几句闲扯:首先,我想说java的线程池真的是很绕,以前一直都感觉新建几个线程一直不退出到底是怎么实现的,也就有了后来学习ThreadPoolExecutor源码.学习源码的过程中,最恶心的其实就是几种 ...
- Csharp: FreeTextbox 编辑器控件运行时错误: 'FTB_ResizeGalleryArea' 未定义
ftb.imagegallery.aspx 改一下代码: <form id="Form1" runat="server" enctype="mu ...
- Node 的fs模块
这个fs.readdir路径要加上__dirname 找到绝对路径 否则会报错 { Error: ENOENT: no such file or directory, scandir '/User ...
- 详解JavaScript UTC时间转换方法
这篇文章主要介绍了JavaScript UTC时间转换方法,介绍了本地时间到UTC时间的转换.UTC日期到本地日期的转换,感兴趣的小伙伴们可以参考一下 一.前言 1.UTC: Universal Ti ...
- Java JSONArray的封装与解析
package com.kigang.test; import net.sf.json.JSONArray; import net.sf.json.JSONObject; import java.ut ...
- linux c开发: 在程序退出时进行处理
有时候,希望程序退出时能进行一些处理,比如保存状态,释放一些资源.c语言开发的linux程序,有可能正常退出(exit),有可能异常crash,而异常crash可能是响应了某信号的默认处理.这里总结一 ...
- php 递归的生成目录函数
/** * 递归的生成目录 * @param str $dir 必须是目录 */ function mkdirs($dir) { return is_dir($dir) ?: mkdirs(dirna ...
- 检查你要加入到gradle的第三方library是否是最新版本
开发者从博客.github readme 或者 官方文档中找到如何在gradle 文件中加入dependency 的时候,往往版本已经比较老旧了,想要找到最新版,介绍一个利器 http://gra ...
- WinDbg:栈帧的含义
转自:http://www.cppblog.com/weiym/archive/2012/06/07/177958.html 栈从高地址向低地址生长, __stcall和__cdecl调用约定都是函数 ...
- Java IO 整理总结
read(byte b[], int off, int len) 方法的作用是从输入流中读取 len 个字节,并把数据写入到字节数组b中,并返回实际读取了多少数据.如果没有读取到任何数据,意味着文件已 ...