Description

基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球上只有4种),而更奇怪的是,组成DNA序列的每一种碱基在该序列中正好出现5次!这样如果一个DNA序列有N种不同的碱基构成,那么它的长度一定是5N。 卡卡醒来后向可可叙述了这个奇怪的梦,而可可这些日子正在研究生物信息学中的基因匹配问题,于是他决定为这个奇怪星球上的生物写一个简单的DNA匹配程序。 为了描述基因匹配的原理,我们需要先定义子序列的概念:若从一个DNA序列(字符串)s中任意抽取一些碱基(字符),将它们仍按在s中的顺序排列成一个新串u,则称u是s的一个子序列。对于两个DNA序列s1和s2,如果存在一个序列u同时成为s1和s2的子序列,则称u是s1和s2的公共子序列。 卡卡已知两个DNA序列s1和s2,求s1和s2的最大匹配就是指s1和s2最长公共子序列的长度。 [任务] 编写一个程序:  从输入文件中读入两个等长的DNA序列;  计算它们的最大匹配;  向输出文件打印你得到的结果。

Input

输入文件中第一行有一个整数N,表示这个星球上某种生物使用了N种不同的碱基,以后将它们编号为1…N的整数。 以下还有两行,每行描述一个DNA序列:包含5N个1…N的整数,且每一个整数在对应的序列中正好出现5次。

Output

输出文件中只有一个整数,即两个DNA序列的最大匹配数目。

Sample Input

2
1 1 2 2 1 1 2 1 2 2
1 2 2 2 1 1 2 2 1 1

Sample Output

7

HINT

[数据约束和评分方法]
60%的测试数据中:1<=N <= 1 000
100%的测试数据中:1<=N <= 20 000

正解:$dp$+树状数组优化。

设$f[i]$表示$b$序列以$i$为右端点的最长公共子序列。

那么我们可以枚举$a$序列的第$i$个字符,我们可以找到$b$序列中所有$a[i]$这个字符的位置,设为$pos$,则$f[pos]=max(f[1]~f[pos-1])+1$。

当前的$f$只与$a$序列的$i-1$及以前的字符匹配了,所以这个方程是没有问题的。

于是我们可以用树状数组来维护前缀最大值,这道题就能被解决了。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define N (100010)
#define lb(x) (x & -x) using namespace std; int pos[N][],a[*N],b[*N],c[*N],f[*N],n,ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void update(RG int x,RG int v){
for (;x<=*n;x+=lb(x)) c[x]=max(c[x],v); return;
} il int query(RG int x){
RG int res=; for (;x;x-=lb(x)) res=max(res,c[x]); return res;
} int main(){
#ifndef ONLINE_JUDGE
freopen("match.in","r",stdin);
freopen("match.out","w",stdout);
#endif
n=gi();
for (RG int i=;i<=*n;++i) a[i]=gi(),pos[a[i]][++pos[a[i]][]]=i;
for (RG int i=;i<=*n;++i) b[i]=gi();
for (RG int i=;i<=*n;++i){
for (RG int j=,k;j;--j){
k=pos[b[i]][j];
f[k]=max(f[k],query(k-)+);
update(k,f[k]),ans=max(ans,f[k]);
}
}
printf("%d\n",ans); return ;
}

bzoj1264 [AHOI2006]基因匹配的更多相关文章

  1. BZOJ1264: [AHOI2006]基因匹配Match

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 541  Solved: 347[Submit][S ...

  2. bzoj1264 [AHOI2006]基因匹配Match 树状数组+lcs

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1255  Solved: 835[Submit][ ...

  3. BZOJ1264 [AHOI2006]基因匹配Match 【LCS转LIS】

    题目链接 BZOJ1264 题解 平凡的\(LCS\)是\(O(n^2)\)的 显然我们要根据题目的性质用一些不平凡的\(LCS\)求法 这就很巧妙了,, 我们考虑\(A\)序列的每个位置可能匹配\( ...

  4. BZOJ1264 [AHOI2006]基因匹配Match 动态规划 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1264 题意概括 给出两个长度为5*n的序列,每个序列中,有1~n各5个. 求其最长公共子序列长度. ...

  5. BZOJ1264——[AHOI2006]基因匹配Match

    1.题意,求最长公共子序列,每个数字在序列中都出现5次 2.分析:最长公共子序列的标准解法是dp,$O(n^2)$过不了的,然后我们发现判断哪两个位置优化的地方用$5n$就可以搞定了,那么我们用BIT ...

  6. [BZOJ1264][AHOI2006]基因匹配Match(DP + 树状数组)

    传送门 有点类似LCS,可以把 a[i] 在 b 串中的位置用一个链式前向星串起来,由于链式前向星是从后往前遍历,所以可以直接搞. 状态转移方程 f[i] = max(f[j]) + 1 ( 1 &l ...

  7. 【BZOJ1264】[AHOI2006]基因匹配Match DP+树状数组

    [BZOJ1264][AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而 ...

  8. 1264: [AHOI2006]基因匹配Match

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 982  Solved: 635[Submit][S ...

  9. bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 793  Solved: 503[Submit][S ...

随机推荐

  1. poj3040

    一.题意:约翰要给他的牛贝西发工资,每天不得低于C元,约翰有n种面值的钱币,第i种的面值为v_i,数量有b_i.问这些钱最多给贝西发多少天的工资.注意,每种面值的金钱都是下一种的面值的倍数. 二.思路 ...

  2. EntityFramework 建立一对一关系

    前言:本来要使用实体拆分实现一对一,但发现查询时无法单独查询,影响效率,故改用手动建立一对一关系 例: 实体类: public class TestDbContext : DbContext { pu ...

  3. CI 框架中的日志处理 以及 404异常处理

    最近在整理项目中的日志问题,查了一些关于 “CI 框架中的日志处理 以及 404异常处理” 的东西,顺便记录一下: 关于错误日志: 1. 在CI框架中的 system/core/CodeIgniter ...

  4. echarts Y轴数据类型不同怎么让折线图显示差距不大

    如果希望在同一grid中展示不同数据类型的折线(1000或10%),那么展现出来的折线肯定显示差距很大,那么怎么让这两条折线显示效果差不多,在之前的项目中碰到了这个问题 每条折线对应的是不同的数据组, ...

  5. Python+Selenium操作select下拉框

    首先需要倒入Select模块: from selenium.webdriver.support.select import Select 常用方法: 通过索引定位:select_by_index() ...

  6. oracle 基础知识(五)--回滚(commit和rollback)

    一,commit 01,commit干了啥 commit 就是提交的意思.也就是当你把99%的东西都做好了,然后你执行最后一步的操作...再commit前的话你可能啪啪啪啪啪,敲了几百条sql DML ...

  7. zabbix 监控 tomcat

    一, 脚本监控文件 #!/bin/bash # @Function # Find out the highest cpu consumed threads of java, and print the ...

  8. log4j整理

    <meta http-equiv="refresh" content="1"/> # log4j日志组件 #- SLF4J,一个**通用日志接口** ...

  9. 【mysql】mysql数据库安装

    今天一直在测功能,整理用例,所以没有去调项目,想到之前有小伙伴求助数据库安装,还远程了一番,所以,就整理一下,数据库在测试工作中还是挺重要的,不能本地测试改个数据都去找开发小哥哥吧,是不是不太好呢,妹 ...

  10. linux下为.net core应用创建守护进程

    1.Supervisor 安装 yum install python-setuptools easy_install supervisor 2.配置 Supervisor mkdir /etc/sup ...