题目链接

BZOJ5323

题解

有一些数是不能被别的数筛掉的

这些数出现最晚的位置就是该排列的\(t(p)\)

所以我们只需找出所有这些数,线性筛一下即可,设有\(m\)个

然后枚举最后的位置

\[ans = \sum\limits_{i = m}^{n} m!(n - m)!{i - 1 \choose m - 1}i
\]

复杂度\(O(n)\)

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn = 10000005,P = 1000000007;
int p[maxn],isn[maxn],pi,L,R,len;
int fac[maxn],fv[maxn],inv[maxn];
void pre(){
fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
for (register int i = 2; i <= len; i++){
fac[i] = 1ll * fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = 1ll * fv[i - 1] * inv[i] % P;
}
}
void init(){
for (register int i = 2; i <= R; i++){
if (!isn[i]) p[++pi] = i;
for (register int j = 1; j <= pi && i * p[j] <= R; j++){
isn[i * p[j]] = p[j];
if (i % p[j] == 0) break;
} }
}
int main(){
scanf("%d%d",&L,&R); len = R - L + 1;
pre();
int cnt = 0;
if (L == 1) cnt = 1;
else{
init();
for (register int i = L; i <= R; i++){
if (!isn[i] || i / isn[i] < L)
cnt++;
}
}
int ans = 0;
for (register int i = cnt; i <= len; i++){
ans = (ans + 1ll * fac[i - 1] % P * fv[i - cnt] % P * i % P) % P;
}
ans = 1ll * ans * cnt % P * fac[len - cnt] % P;
printf("%d\n",ans);
return 0;
}

BZOJ5323 [Jxoi2018]游戏 【数论/数学】的更多相关文章

  1. 洛谷P4562 [JXOI2018]游戏 数论

    正解:数论 解题报告: 传送门! 首先考虑怎么样的数可能出现在t(i)那个位置上?显然是[l,r]中所有无法被表示出来的数(就约数不在[l,r]内的数嘛QwQ 所以可以先把这些数筛出来 具体怎么筛的话 ...

  2. BZOJ5323 JXOI2018游戏(线性筛+组合数学)

    可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和. 于是先求出上述定义中的质数个数,线性筛即可.然后对每个最短时间求方案数,非常显然 ...

  3. BZOJ5323 JXOI2018 游戏

    传送门 这是我见过的为数不多的良心九怜题之一. 题目大意 有一堆屋子,编号为$l,l+1...r-1,r$,你每次会走入一个没走入过的房子,然后这个房子以及编号为这个房子编号的倍数的房子就会被自动标记 ...

  4. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  5. [JXOI2018]游戏 (线性筛,数论)

    [JXOI2018]游戏 \(solution:\) 这一道题的原版题面实在太负能量了,所以用了修改版题面. 这道题只要仔细读题,我们就可以将题目的一些基本性质分析出来:首先我们定义:对于某一类都可以 ...

  6. 【题解】JXOI2018游戏(组合数)

    [题解]JXOI2018游戏(组合数) 题目大意 对于\([l,r]\)中的数,你有一种操作,就是删除一个数及其所有倍数.问你删除所有数的所有方案的步数之和. 由于这里是简化题意,有一个东西没有提到: ...

  7. BZOJ5323:[JXOI2018]游戏

    传送门 不难发现,所有不能被其他数筛掉的数是一定要选的,只有选了这些数字才能结束 假设有 \(m\) 个,枚举结束时间 \(x\),答案就是 \(\sum \binom{x-1}{m-1}m!(n-m ...

  8. BZOJ5323 & 洛谷4562:[JXOI2018]游戏——题解

    https://www.luogu.org/problemnew/show/P4562 https://www.lydsy.com/JudgeOnline/problem.php?id=5323 (B ...

  9. zzulioj--1790-- 弹珠游戏(数学水题!)

    弹珠游戏 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 14  Solved: 10 SubmitStatusWeb Board Descriptio ...

随机推荐

  1. 使用webBrowser进行C#和JS通讯

    .前台调用后台: 在webBrowser使用过程中为了C#和js通讯,webBrowser必须设置ObjectForScripting的属性,它是一个object,这个object可以提供给webBr ...

  2. ECSHOP和SHOPEX快递单号查询韵达插件V8.6专版

    发布ECSHOP说明: ECSHOP快递物流单号查询插件特色 本ECSHOP快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅 ...

  3. 百度app红包? 百度全家桶?果断卸载

    听说今年的春晚红包与百度合作.这不 刚又下载了一个百度app,之前下载过,太卡了,用户体验极.本身对百度也没啥好感,再加上这周看了:百度已死的文章,搜索全百家号.具体啥情况,你们百度搜一搜吧

  4. (数据科学学习手册28)SQL server 2012中的查询语句汇总

    一.简介 数据库管理系统(DBMS)最重要的功能就是提供数据查询,即用户根据实际需求对数据进行筛选,并以特定形式进行显示.在Microsoft SQL Serve 2012 中,可以使用通用的SELE ...

  5. Verilog学习笔记基本语法篇(七)········ 生成块

    生成块可以动态的生成Verilog代码.可以用于对矢量中的多个位进行重复操作.多个模块的实例引用的重复操作.根据参数确定程序中是否包含某段代码.生成语句可以控制变量的声明.任务和函数的调用.还能对实例 ...

  6. ALVのイベントを取得する方法

    概要 表示されたALVをダブルクリックした時に別画面へ遷移する方法を説明しよう.下記サンプルのように標準トランザクションへ遷移したり.別のALVを表示したりする事が可能である. サンプルコード ABA ...

  7. python2.7入门---break语句&continue语句&pass空语句

        这篇文章记录的就是比较好玩的东西了,也是比较重要的.咱们先来看一下break语句.Python break语句,就像在C语言中,打破了最小封闭for或while循环.break语句用来终止循环 ...

  8. python eval()函数的妙用和滥用

    eval()函数十分强大,官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果: >>> s='8*8' >>> eval(s) 64 >& ...

  9. 今天领导分享了一个探测端口的命令-linux下提示bash:command not found

    今天领导分享了一个探测端口的命令,于是试了一下,提示未找到-bash: nc: command not found  因此决定将bash的命令在复习一下,温故而知新 总结整理于此: 确定你的DNS可以 ...

  10. Kotlin 1 函数

    #2 函数 函数声明和平时我见到的有点不太一样,使用关键字fun来声明.(感觉好欢乐的样子···O(∩_∩)O~~) 下面的示例,简单的声明了一个函数: // 这是函数声明 fun this_is_a ...