Rain on your Parade

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Others)
Total Submission(s): 5755    Accepted Submission(s): 1900

Description:

You’re giving a party in the garden of your villa by the sea. The party is a huge success, and everyone is here. It’s a warm, sunny evening, and a soothing wind sends fresh, salty air from the sea. The evening is progressing just as you had imagined. It could be the perfect end of a beautiful day.
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?

Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.

Input:

The input starts with a line containing a single integer, the number of test cases.
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.

Output:

For each test case, write a line containing “Scenario #i:”, where i is the number of the test case starting at 1. Then, write a single line that contains the number of guests that can at most reach an umbrella before it starts to rain. Terminate every test case with a blank line.

Sample Input:

2
1
2
1 0 3
3 0 3
2
4 0
6 0
1
2
1 1 2
3 3 2
2
2 2
4 4

Sample Output:

Scenario #1:
2

Scenario #2:
2

题意:

给出客人和雨伞的二维坐标,知道几分钟后下雨以及客人的移动速度,问可以拿到雨伞最多有多少人。

题解:

将客人与其可以到达的雨伞连边,进行二分图的最大匹配即可。

但这题比较坑的地方就是数据量较大,匈牙利算法会超时(好像很少有题会卡匈牙利算法........),所以就应该用匈牙利算法的优化版:HK算法。

HK算法的思想就是先通过bfs预处理出最小增光路集,然后dfs增广的时候就把这些增广路集一并增广。

具体的算法分析可以看看这个:http://files.cnblogs.com/files/liuxin1.pdf

直接上代码~~

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
using namespace std;
const int N = ;
int T,t,n,m,ans,lim,cnt=;
int d[N][N],link[N][N],match[N],match2[N],check[N],disx[N],disy[N];
struct guests{
int x,y,v;
}g[N];
inline void init(){
memset(link,,sizeof(link));memset(match,-,sizeof(match));
ans=;cnt++;memset(check,,sizeof(check));memset(match2,-,sizeof(match2));
}
inline int dfs(int x){
for(int i=;i<=n;i++){
if(disy[i]==disx[x]+ && !check[i] &&link[x][i]){
check[i]=;
if(match[i]!=- && disy[i]==lim) continue ;//此时增广路会大于lim
if(match[i]==- || dfs(match[i])){
match[i]=x;
match2[x]=i;
return ;
}
}
}
return ;
}
inline bool bfs(){
queue<int> q;
memset(disx,-,sizeof(disx));
memset(disy,-,sizeof(disy));lim = (<<);
for(int i=;i<=m;i++) if(match2[i]==-){
q.push(i);disx[i]=;
}
while(!q.empty()){
int u=q.front();q.pop();
if(disx[u]>lim) break ; //条件成立,所求增广路必然比当前的增广路长度长
for(int i=;i<=n;i++){
if(link[u][i] && disy[i]==-){
disy[i]=disx[u]+;
if(match[i]==-) lim=disy[i];//找到增广路,记录长度
else{
disx[match[i]]=disy[i]+;
q.push(match[i]);//入队,寻找更长的增广路
}
}
}
}
return lim!=(<<) ;
}
int main(){
scanf("%d",&T);
while(T--){
init();
scanf("%d%d",&t,&m);
for(int i=;i<=m;i++){
scanf("%d%d%d",&g[i].x,&g[i].y,&g[i].v);
}
scanf("%d",&n);
for(int i=,x,y;i<=n;i++){
scanf("%d%d",&x,&y);
for(int j=;j<=m;j++){
d[j][i]=abs(g[j].x-x)+abs(g[j].y-y);
if(d[j][i]<=t*g[j].v) link[j][i]=;
}
}
while(bfs()){
memset(check,,sizeof(check));
for(int i=;i<=m;i++){
if(dfs(i)) ans++;
}
}
printf("Scenario #%d:\n%d\n\n",cnt,ans);
} return ;
}

HDU2389:Rain on your Parade(二分图最大匹配+HK算法)的更多相关文章

  1. HDU2389 Rain on your Parade —— 二分图最大匹配 HK算法

    题目链接:https://vjudge.net/problem/HDU-2389 Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)  ...

  2. hdu2389 Rain on your Parade 二分图匹配--HK算法

    You’re giving a party in the garden of your villa by the sea. The party is a huge success, and every ...

  3. hdu-2389.rain on your parade(二分匹配HK算法)

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

  4. SPOJ 4206 Fast Maximum Matching (二分图最大匹配 Hopcroft-Carp 算法 模板)

    题目大意: 有n1头公牛和n2头母牛,给出公母之间的m对配对关系,求最大匹配数.数据范围:  1 <= n1, n2 <= 50000, m <= 150000 算法讨论: 第一反应 ...

  5. Hdu2389 Rain on your Parade (HK二分图最大匹配)

    Rain on your Parade Problem Description You’re giving a party in the garden of your villa by the sea ...

  6. Hdu 3289 Rain on your Parade (二分图匹配 Hopcroft-Karp)

    题目链接: Hdu 3289 Rain on your Parade 题目描述: 有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可 ...

  7. UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法

    二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...

  8. HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...

  9. 51Nod 2006 飞行员配对(二分图最大匹配)-匈牙利算法

    2006 飞行员配对(二分图最大匹配) 题目来源: 网络流24题 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 第二次世界大战时期,英国皇家空军从沦陷国 ...

随机推荐

  1. POJ 3210 : Coins

    参考:https://blog.csdn.net/u010885899/article/details/46636523 http://kqwd.blog.163.com/blog/static/41 ...

  2. Spring 的好处?

    1.降低了组件之间的耦合性 ,实现了软件各层之间的解耦 2.可以使用容易提供的众多服务,如事务管理,消息服务等 3.容器提供单例模式支持 4.容器提供了AOP技术,利用它很容易实现如权限拦截,运行期监 ...

  3. 安装cloudera manager使用mysql作为元数据库

    1.首次安装好mysql数据库后,会生成一个随机密码,使用如下办法找到: cat /var/log/mysqld.log |grep password 2.首次安装好mysql数据库后,第一次登陆进去 ...

  4. C语言RL78 serial bootloader和C#语言bootloader PC端串口通信程序

    了解更多关于bootloader 的C语言实现,请加我QQ: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序). 前段时间完成的hype ...

  5. Hibernate-ORM:10.Hibernate中的分页

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客讲述Hibernate中的分页 hibernate中的分页其实很好写,它通过操作对象的方式,来进行分页 ...

  6. Anytime项目开发记录2

    注册,登陆于密码找回.这是这次记录的主要内容. 首先,我们来看类图: 因为一直在改,所以与第二篇介绍项目框架时的图会有一些不一样. 代码都是非常简单的. 由于在注册和登陆这里,需要弹出一些对话框告诉用 ...

  7. github简单使用教程(转)

    github是一个基于git的代码托管平台,付费用户可以建私人仓库,我们一般的免费用户只能使用公共仓库,也就是代码要公开.对于一般人来说公共仓库就已经足够了,而且我们也没多少代码来管理,O(∩_∩)O ...

  8. 3.Linux 文件的压缩与打包

    1.常用压缩打包命令 常用的压缩打包扩展名为如下: *.Z compress 程序压缩的文件,非常老旧了,不再细说 *.gz gzip 程序压缩的文件: *.bz2 bzip2 程序压缩的文件: *. ...

  9. 2015年开源前端框架盘点TOP20

    2015年,榜单根据github上star数作为排名依据.(榜单中大部分为组件式框架, react.Angular等基础框架不在此篇讨论) 1.Bootstrap 类别/语言:HTML.CSS.Jav ...

  10. LeetCode 92 ——反转链表 II

    1. 题目 2. 解答 我们需要先找到第 m 个结点及其上一个结点,然后将从 m 到 n 的结点进行反转,最后依次将 m 到 n 反转后的结点和 n 之后的结点放入原链表中即可. 从前往后依次遍历 m ...