一、协方差矩阵

协方差矩阵为对称矩阵。

在高斯分布中,方差越大,数据分布越分散,方差越小发,数据分布越集中。

在协方差矩阵中,假设矩阵为二维,若第二维的方差大于第一维的方差,则在图像上的体现就是:高斯分布呈现一个椭圆形,且主轴对应的就是方差大的第二维度。简而言之,若对角线元素相等,则高斯分布的图形是圆形,反之则分布图形为椭圆形。

若协方差矩阵的非对角元素为0,则高斯分布图形平行于坐标轴,反之则不平行。

  • 为什么当样本数量远小于特征向量的维数n时,协方差逆矩阵不存在(矩阵不满秩)?

    • 在多变量高斯分布中,协方差矩阵和均值刻画了每个维度的特征,n维可以理解为有n个未知量,每一个样本可以构造一个等式,如果样本数量小于未知量n,那么这个n元方程组将无法求解。
    • 此外,在多变量高斯分布中,公式里包含了协方差矩阵的行列式和逆矩阵,如果不满秩,则公式无法表达。
  • 为什么限制了协方差矩阵为对角矩阵,那么高斯分布的形状就会和坐标轴平行?
    • 限制协方差矩阵为对角矩阵,意味着不同维度之间的协方差为0,则会使得模型丢失了不同维度之间的相关性。

二、因子分析模型

  • 为什么因子分析模型可以解决样本数量少于特征维度n的问题?

    • 假设对于某个问题,有m个n维的样本数据,若m小于n,则协方差矩阵就不可逆,高斯分布的公式也无法得解,而在因子分析模型中,将n维的数据视为由d维(d < n)的变量经过一定的变换得到的,从而降低了问题的维度,使得m > n。(个人理解,不一定对
    • 假设可以解释为:每个点x都是由d维正态随机变量z生成。

【Coursera】因子分析模型的更多相关文章

  1. 多元统计之因子分析模型及Python分析示例

    1. 简介 因子分析是一种研究观测变量变动的共同原因和特殊原因, 从而达到简化变量结构目的的多元统计方法. 因子分析模型是主成分分析的推广, 也是利用降维的思想, 将复杂的原始变量归结为少数几个综合因 ...

  2. 斯坦福ML公开课笔记14——主成分分析

    上一篇笔记中,介绍了因子分析模型,因子分析模型使用d维子空间的隐含变量z来拟合训练数据,所以实际上因子分析模型是一种数据降维的方法,它基于一个概率模型,使用EM算法来预计參数. 本篇主要介绍PCA(P ...

  3. SPSS-因子分析

    因子分析 有可能用较少的综合指标分析存在于各变量中的各类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标称为因子.定义:因子分析就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个 ...

  4. 因子分析(Factor analysis)

    1.引言 在高斯混合和EM算法中,我们运用EM算法拟合混合模型,但是我们得考虑得需要多少的样本数据才能准确识别出数据中的多个高斯模型!看下面两种情况的分析: 第一种情况假如有 m 个样本,每个样本的维 ...

  5. 【cs229-Lecture14】主成分分析法

    本节课内容: 因子分析 ---因子分析中的EM步骤的推导过程 主成份分析:有效地降低维度的方法 因子分析 混合高斯模型的问题 接下来讨论因子分析模型,在介绍因子分析模型之前,先看高斯分布的另一种写法, ...

  6. 【cs229-Lecture13】高斯混合模型

    本节内容: 1.混合高斯模型: 2.将混合高斯模型应用到混合贝叶斯模型:(应用:文本聚类) 3.结合EM算法,讨论因子分析算法: 4.高斯分布的有用性质. 混合高斯模型 将一般化的EM算法流程(下载笔 ...

  7. 因子分析(Factor Analysis)

    原文地址:http://www.cnblogs.com/jerrylead/archive/2011/05/11/2043317.html 1 问题 之前我们考虑的训练数据中样例的个数m都远远大于其特 ...

  8. PCA主成分分析 R语言

    1. PCA优缺点 利用PCA达到降维目的,避免高维灾难. PCA把所有样本当作一个整体处理,忽略了类别属性,所以其丢掉的某些属性可能正好包含了重要的分类信息 2. PCA原理 条件1:给定一个m*n ...

  9. R语言实战(九)主成分和因子分析

    本文对应<R语言实战>第14章:主成分和因子分析 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量成为主成分. 探索性因子分析(EFA)是 ...

随机推荐

  1. GATK--数据预处理,质控,检测变异

    版权声明:本文源自 解螺旋的矿工, 由 XP 整理发表,共 13781 字. 转载请注明:从零开始完整学习全基因组测序(WGS)数据分析:第4节 构建WGS主流程 | Public Library o ...

  2. 将CSV文件导入到hive数据库

    将csv文件导入hive后出现了所有的字段只显示在新建的表的第一个字段中,后面的字段全是null. 出现这种的原因是hive以行分隔数据,需要修改为按逗号'  ,  ‘ 进行分隔读取, 具体操作如下, ...

  3. 2017-2018-1 20155320第十周课下作业-IPC

    2017-2018-1 20155320第十周课下作业-IPC 研究Linux下IPC机制:原理,优缺点,每种机制至少给一个示例,提交研究博客的链接 共享内存 管道 FIFO 信号 消息队列 共享内存 ...

  4. 对control file的学习笔记

    SQL> startup nomount;startup nomount;ORACLEインスタンスが起動しました. Total System Global Area 521936896 byte ...

  5. Spring的IOC理解(转载)

    学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  6. AJAX其实就是一个异步网络请求

    AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML).其实就是一个异步网络请求. 一.创建对象 var xmlhttp; if (w ...

  7. 数据结构与算法 —— 链表linked list(06)

    回文链表 链接 请检查一个链表是否为回文链表. 进阶:你能在 O(n) 的时间和 O(1) 的额外空间中做到吗? 解题思路: 回文链表的特点就是对称. 把链表放到栈中去,利用栈的先进后出的规则,和原链 ...

  8. Git报错:Your branch is ahead of 'origin/master' by 1 commit

    .    commit之后,用git status,打印信息为: # On branch master # Your branch is ahead of 'origin/master' by 1 c ...

  9. 006 --MySQL索引原理

    一 .索引的概念? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化 ...

  10. vue mock(模拟后台数据) 最简单实例(一)——适合小白

    开发是前后端分离,不需要等待后台开发.前端自己模拟数据,经本人测试成功. 我们在根目录新建存放数据的json文件,存放我们的数据data.json //data.json{ "status& ...