题目链接:

http://codeforces.com/problemset/problem/621/E

E. Wet Shark and Blocks

time limit per test2 seconds
memory limit per test256 megabytes
#### 问题描述
> There are b blocks of digits. Each one consisting of the same n digits, which are given to you in the input. Wet Shark must choose exactly one digit from each block and concatenate all of those digits together to form one large integer. For example, if he chooses digit 1 from the first block and digit 2 from the second block, he gets the integer 12.
>
> Wet Shark then takes this number modulo x. Please, tell him how many ways he can choose one digit from each block so that he gets exactly k as the final result. As this number may be too large, print it modulo 109 + 7.
>
> Note, that the number of ways to choose some digit in the block is equal to the number of it's occurrences. For example, there are 3 ways to choose digit 5 from block 3 5 6 7 8 9 5 1 1 1 1 5.
#### 输入
> The first line of the input contains four space-separated integers, n, b, k and x (2 ≤ n ≤ 50 000, 1 ≤ b ≤ 109, 0 ≤ k 
> The next line contains n space separated integers ai (1 ≤ ai ≤ 9), that give the digits contained in each block.
#### 输出
> Print the number of ways to pick exactly one digit from each blocks, such that the resulting integer equals k modulo x.
####样例输入
> 12 1 5 10
> 3 5 6 7 8 9 5 1 1 1 1 5

样例输出

3

题意

给你n个数ai(ai>=1&&ai<=9),你每次要在其中选一个数,可以重复选,你现在要取b次,将选出来的数按选择的顺序组成一个b位的整数,现在问要使最后的结果%x==k,总共有多少种选法。

题解

dp[i][j]表示选出来的前i个数拼成的数%x==j的一共有多少种,则容易得到状态转移表达式:dp[i][(k10+j)%10]+=dp[i-1][k]cntv[j](cntv[j]表示n个数中等于j的有多少个)。

b有10^9,明显是需要矩阵加速一下!!!

代码

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII; const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0); //start----------------------------------------------------------------------
const int maxn=111;
const int mod=1e9+7; struct Matrix {
LL mat[maxn][maxn];
Matrix() { memset(mat, 0, sizeof(mat)); }
friend Matrix operator *(const Matrix& A, const Matrix& B);
friend Matrix operator +(const Matrix &A,const Matrix &B);
friend Matrix pow(Matrix A, int n);
}; Matrix I; Matrix operator +(const Matrix& A, const Matrix& B) {
Matrix ret;
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
ret.mat[i][j] = (A.mat[i][j] + B.mat[i][j])%mod;
}
}
return ret;
} Matrix operator *(const Matrix& A, const Matrix& B) {
Matrix ret;
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
for (int k = 0; k < maxn; k++) {
ret.mat[i][j] = (ret.mat[i][j]+A.mat[i][k] * B.mat[k][j]) % mod;
}
}
}
return ret;
} Matrix pow(Matrix A, int n) {
Matrix ret=I;
while (n) {
if (n & 1) ret = ret*A;
A = A*A;
n /= 2;
}
return ret;
} int n,m,k,mo;
LL cntv[11]; void solve(){
///状态转移矩阵
Matrix A;
for(int j=0;j<mo;j++){
for(int dig=1;dig<=9;dig++){
int i=(j*10+dig)%mo;
A.mat[i][j]+=cntv[dig];
}
}
///初始向量
Matrix vec;
for(int dig=1;dig<=9;dig++){
vec.mat[dig%mo][0]+=cntv[dig];
} vec=pow(A,m-1)*vec; prf("%I64d\n",vec.mat[k][0]); } void init(){
///单位矩阵
for(int i=0;i<maxn;i++) I.mat[i][i]=1;
clr(cntv,0);
} int main() {
init();
scf("%d%d%d%d",&n,&m,&k,&mo);
for(int i=1;i<=n;i++){
int x; scf("%d",&x);
cntv[x]++;
}
solve();
return 0;
} //end-----------------------------------------------------------------------

Codeforces Round #341 (Div. 2) E. Wet Shark and Blocks dp+矩阵加速的更多相关文章

  1. Codeforces Round #341 (Div. 2) E - Wet Shark and Blocks

    题目大意:有m (m<=1e9) 个相同的块,每个块里边有n个数,每个数的范围是1-9,从每个块里边取出来一个数组成一个数,让你求组成的方案中 被x取模后,值为k的方案数.(1<=k< ...

  2. Codeforces Round #341 Div.2 C. Wet Shark and Flowers

    题意: 不概括了..太长了.. 额第一次做这种问题 算是概率dp吗? 保存前缀项中第一个和最后一个的概率 然后每添加新的一项 就解除前缀和第一项和最后一项的关系 并添加新的一项和保存的两项的关系 这里 ...

  3. Codeforces Round #341 Div.2 B. Wet Shark and Bishops

    题意:处在同一对角线上的主教(是这么翻译没错吧= =)会相互攻击 求互相攻击对数 由于有正负对角线 因此用两个数组分别保存每个主教写的 x-y 和 x+y 然后每个数组中扫描重复数字k ans加上kC ...

  4. Codeforces Round #341 Div.2 A. Wet Shark and Odd and Even

    题意是得到最大的偶数和 解决办法很简单 排个序 取和 如果是奇数就减去最小的奇数 #include <cstdio> #include <cmath> #include < ...

  5. Codeforces Round #341 (Div. 2)

    在家都变的懒惰了,好久没写题解了,补补CF 模拟 A - Wet Shark and Odd and Even #include <bits/stdc++.h> typedef long ...

  6. Codeforces Round #341 (Div. 2) ABCDE

    http://www.cnblogs.com/wenruo/p/5176375.html A. Wet Shark and Odd and Even 题意:输入n个数,选择其中任意个数,使和最大且为奇 ...

  7. Codeforces Round #267 (Div. 2) C. George and Job(DP)补题

    Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...

  8. Codeforces Round #341 (Div. 2) D. Rat Kwesh and Cheese 数学

    D. Rat Kwesh and Cheese 题目连接: http://www.codeforces.com/contest/621/problem/D Description Wet Shark ...

  9. Codeforces Round #341 (Div. 2)B

    B. Wet Shark and Bishops time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

随机推荐

  1. canvas 绘制刮刮卡

    思路=> 用div来展示刮奖结果,用canvas绘制刮奖前展示的图片或者文字:将canvas叠在div上方,刮奖是只需要操作canvas配合touch事件即可简单完成. canvas刮奖可以用g ...

  2. android6.0系统Healthd分析及低电量自动关机流程

    系统平台:android6.0概述Healthd是android4.4之后提出来的一种中介模型,该模型向下监听来自底层的电池事件,向上传递电池数据信息给Framework层的BatteryServic ...

  3. React-Native StyleSheet属性支持

    /** * Copyright (c) 2015-present, Facebook, Inc. * All rights reserved. * * This source code is lice ...

  4. sqlserver分区视图中分区列的规则

    分区列规则 分区列存在于每个成员表上,并且通过 CHECK 约束标识特定表中的可用数据.分区列必须遵守如下规则: 每个基表都拥有键值由 CHECK 约束所强制的分区列.每个表的 CHECK 约束的键范 ...

  5. OpenCV学习系列(一) Mac下OpenCV + xcode人脸检测实现

    # OpenCV学习系列(一) Mac下OpenCV + xcode人脸检测实现 [-= 博客目录 =-] 1-学习目标 1.1-本章介绍 1.2-实践内容 1.3-相关说明 2-学习过程 2.1-环 ...

  6. Java 中的extends 和 implements

    初学Java语言, 代码中的extends和implements让我感到很迷惑,现在终于弄明白它们之间的区别和用法了. //定义一个Runner接口 public inerface Runner { ...

  7. java中package import区别

    他们两个是互逆过程package freedom.bean;将你这个类放在了/freedom/bean/这个文件夹下面要使用的话import freedom.bean.*;导入这个类

  8. 用docsify快速构建文档,并用GitHub Pages展示

    什么是docsify 无需构建,写完 markdown 直接发布成文档,写说明文档的极佳选择. 快速上手 安装 npm i docsify-cli -g docsify init docs 创建项目 ...

  9. ORM框架学习之EF

    首先推荐一篇很好的EF文章翻译,可以系统的学习一遍. <Entity Framework 6 Recipes>中文翻译系列 EF使用体会 优点: 可以省去Ado.net复杂的管道连接代码. ...

  10. 大数据中Linux集群搭建与配置

    因测试需要,一共安装4台linux系统,在windows上用vm搭建. 对应4个IP为192.168.1.60.61.62.63,这里记录其中一台的搭建过程,其余的可以直接复制虚拟机,并修改相关配置即 ...