【TJOI2015】线性代数
题面
题解
要求的是
\]
可以看出这是一个最大权闭合子图问题
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int N(510), maxn(3000010), INF(0x3f3f3f3f);
struct edge { int next, to, cap; } e[maxn << 1];
int head[maxn], e_num = -1, n, q[maxn], tail, lev[maxn], cur[maxn];
int S, T, id_b[N][N], id_c[N], idcnt, ans;
inline void add_edge(int from, int to, int cap)
{
e[++e_num] = (edge) {head[from], to, cap}; head[from] = e_num;
e[++e_num] = (edge) {head[to], from, cap}; head[to] = e_num;
}
int bfs()
{
clear(lev, 0); q[tail = lev[S] = 1] = S;
for(RG int i = 1; i <= tail; i++)
{
int x = q[i];
for(RG int j = head[x]; ~j; j = e[j].next)
{
int to = e[j].to; if(lev[to] || (!e[j].cap)) continue;
q[++tail] = to, lev[to] = lev[x] + 1;
}
}
return lev[T];
}
int dfs(int x, int f)
{
if(x == T || (!f)) return f;
int ans = 0, cap;
for(RG int &i = cur[x]; ~i; i = e[i].next)
{
int to = e[i].to;
if(e[i].cap && lev[to] == lev[x] + 1)
{
cap = dfs(to, std::min(f - ans, e[i].cap));
e[i].cap -= cap, e[i ^ 1].cap += cap, ans += cap;
if(ans == f) break;
}
}
return ans;
}
inline int Dinic()
{
int ans = 0;
while(bfs())
{
for(RG int i = S; i <= T; i++) cur[i] = head[i];
ans += dfs(S, INF);
}
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
clear(head, -1); n = read(); S = ++idcnt;
for(RG int i = 1; i <= n; i++)
for(RG int j = 1; j <= n; j++)
id_b[i][j] = ++idcnt;
for(RG int i = 1; i <= n; i++) id_c[i] = ++idcnt;
T = ++idcnt;
for(RG int i = 1, x; i <= n; i++)
for(RG int j = 1; j <= n; j++)
ans += (x = read()), add_edge(S, id_b[i][j], x),
add_edge(id_b[i][j], id_c[i], INF),
add_edge(id_b[i][j], id_c[j], INF);
for(RG int i = 1, x; i <= n; i++)
x = read(), add_edge(id_c[i], T, x);
printf("%d\n", ans - Dinic());
return 0;
}
【TJOI2015】线性代数的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- 【LG3973】[TJOI2015]线性代数
[LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...
- 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1368 Solved: 832 Description 给 ...
- [Luogu 3973] TJOI2015 线性代数
[Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...
- 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图
[BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...
- [TJOI2015]线性代数(网络流)
[TJOI2015]线性代数(最大权闭合子图,网络流) 为了提高智商,ZJY开始学习线性代数.她的小伙伴菠萝给她出了这样一个问题:给定一个n*n的矩阵B和一个1×n的矩阵C.求出一个1×n的01矩阵A ...
- 洛谷P3973 - [TJOI2015]线性代数
Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...
- 【BZOJ】3996: [TJOI2015]线性代数
题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...
随机推荐
- iOS设计模式 - 中介者
iOS设计模式 - 中介者 原理图 说明 用一个中介对象来封装一系列的对象交互.中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互. 注:中介者对象本身没有复用价值 ...
- UITableView中cell点击的绚丽动画效果
UITableView中cell点击的绚丽动画效果 本人视频教程系类 iOS中CALayer的使用 效果图: 源码: YouXianMingCell.h 与 YouXianMingCell.m / ...
- [翻译] NSImage+HHTint - Tints grayscale images using CoreImage
NSImage+HHTint - Tints grayscale images using CoreImage https://github.com/gloubibou/NSImage-HHTint ...
- [翻译] FBLikeLayout
FBLikeLayout This is an UICollectionView layout inspired by the photo section of facebook. This layo ...
- SQL脚本运行
$v=New-Object -ComObject wscript.shell#也可以使用反单引号(`)字符来强制PowerShell将单引号或双引号解释为文本,0不显示命令提示符窗口$v.run(&q ...
- 检查windows系统支持的密码套件
Windows 10客户端及Windows server 2016 服务器可以使用powershell 命令获得系统支持的密码套件列表,禁用启用相应的密码套件. #命令链接:https://techn ...
- django中session的存储位置
django-session 存放位置 设置session的保存位置,有三种方法: 保存在关系数据库(db) 保存在缓存数据库(cache) 或者 关系+缓存数据库(cache_db) 保存在文件系统 ...
- 基于easyui开发Web版Activiti流程定制器详解(六)——Draw2d的扩展(三)
题外话: 最近在忙公司的云项目空闲时间不是很多,所以很久没来更新,今天补上一篇! 回顾: 前几篇介绍了一下设计器的界面和Draw2d基础知识,这篇讲解一下本设计器如何扩展Draw2d. 进入主题: 先 ...
- Regular Expression Patterns
Regular Expression Patterns Following lists the regular expression syntax that is available in Pytho ...
- net mvc中实现记录用户登录信息(记住登录效果)
现记录用户登录信息(记住登录效果) 本文讲述了使用cookies实现网站记住登录效果,效果如下: 主要实现方法,当用户选择记住登录时建立cookies保存用户名和用户密码,当用户登录不选择记住登录时, ...