【TJOI2015】线性代数
题面
题解
要求的是
\]
可以看出这是一个最大权闭合子图问题
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int N(510), maxn(3000010), INF(0x3f3f3f3f);
struct edge { int next, to, cap; } e[maxn << 1];
int head[maxn], e_num = -1, n, q[maxn], tail, lev[maxn], cur[maxn];
int S, T, id_b[N][N], id_c[N], idcnt, ans;
inline void add_edge(int from, int to, int cap)
{
e[++e_num] = (edge) {head[from], to, cap}; head[from] = e_num;
e[++e_num] = (edge) {head[to], from, cap}; head[to] = e_num;
}
int bfs()
{
clear(lev, 0); q[tail = lev[S] = 1] = S;
for(RG int i = 1; i <= tail; i++)
{
int x = q[i];
for(RG int j = head[x]; ~j; j = e[j].next)
{
int to = e[j].to; if(lev[to] || (!e[j].cap)) continue;
q[++tail] = to, lev[to] = lev[x] + 1;
}
}
return lev[T];
}
int dfs(int x, int f)
{
if(x == T || (!f)) return f;
int ans = 0, cap;
for(RG int &i = cur[x]; ~i; i = e[i].next)
{
int to = e[i].to;
if(e[i].cap && lev[to] == lev[x] + 1)
{
cap = dfs(to, std::min(f - ans, e[i].cap));
e[i].cap -= cap, e[i ^ 1].cap += cap, ans += cap;
if(ans == f) break;
}
}
return ans;
}
inline int Dinic()
{
int ans = 0;
while(bfs())
{
for(RG int i = S; i <= T; i++) cur[i] = head[i];
ans += dfs(S, INF);
}
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
clear(head, -1); n = read(); S = ++idcnt;
for(RG int i = 1; i <= n; i++)
for(RG int j = 1; j <= n; j++)
id_b[i][j] = ++idcnt;
for(RG int i = 1; i <= n; i++) id_c[i] = ++idcnt;
T = ++idcnt;
for(RG int i = 1, x; i <= n; i++)
for(RG int j = 1; j <= n; j++)
ans += (x = read()), add_edge(S, id_b[i][j], x),
add_edge(id_b[i][j], id_c[i], INF),
add_edge(id_b[i][j], id_c[j], INF);
for(RG int i = 1, x; i <= n; i++)
x = read(), add_edge(id_c[i], T, x);
printf("%d\n", ans - Dinic());
return 0;
}
【TJOI2015】线性代数的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- 【LG3973】[TJOI2015]线性代数
[LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...
- 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1368 Solved: 832 Description 给 ...
- [Luogu 3973] TJOI2015 线性代数
[Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...
- 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图
[BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...
- [TJOI2015]线性代数(网络流)
[TJOI2015]线性代数(最大权闭合子图,网络流) 为了提高智商,ZJY开始学习线性代数.她的小伙伴菠萝给她出了这样一个问题:给定一个n*n的矩阵B和一个1×n的矩阵C.求出一个1×n的01矩阵A ...
- 洛谷P3973 - [TJOI2015]线性代数
Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...
- 【BZOJ】3996: [TJOI2015]线性代数
题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...
随机推荐
- VC++下使用ADO操作数据库
VC++下使用ADO操作数据库主要要用到 _ConnectionPtr,_CommandPtr,_RecordsetPtr三个ADO对象指针,我查找了相关资料,发现网上源码很多,但是都相对凌乱,于是自 ...
- MySQL Bug导致异常宕机的分析流程
原文链接:http://click.aliyun.com/m/42521/ 摘要: 本文主要通过一个bug来记录一下如何分析一个MySQL bug的崩溃信息. 版本:Percona 5.7.17-11 ...
- 转:oracle:win7手工卸载oracle数据库11g
环境:oracle 11g,win7,64bit 问题:oracle不正常安装.重新安装等情况需要卸载软件,然而oracle11g取消了界面卸载,改为deinstall.bat文件执行卸载.具体关于d ...
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)
codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...
- Mac OS X 10.9 Mavericks 无法启动 WebStorm(PhpStorm)
手滑把Mac的系统升到了10.9,结果机子上的PhpStorm6.0启动不了. 十分天真的重装了一次PhpStorm,问题依然没有修复. 开始怨念苹果的这次升级,毕竟以往的升级都是无缝的,升级OS就应 ...
- 【原创】Spring 注入方式
Spring 强烈推荐注解在构造器上,且对于不能为null的字段或者属性都用断言. 1. 设值注入 原理:通过setter方法注入 XML配置方式:bean下的property标签,用value指定基 ...
- 用php代码统计数据库中符合条件的行数
$sql1 = "select count(*) from t_user where age<17"; $data1 = mysql_query($sql1); $rows1 ...
- 洛谷 P1073 最优贸易
题目描述 CC C 国有 n n n 个大城市和 m mm 条道路,每条道路连接这 nnn 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 mmm 条道路中有一部分为单向通行的道路 ...
- Hive学习之路 (十五)Hive分析窗口函数(三) CUME_DIST和PERCENT_RANK
这两个序列分析函数不是很常用,这里也练习一下. 数据准备 数据格式 cookie3.txt d1,user1, d1,user2, d1,user3, d2,user4, d2,user5, 创建表 ...
- nodejs 跨域设置cookie
在做vue全家桶+express 做项目. 想做一个免登陆功能,选择session方案. 服务器设置session 后, 返回的响应头有Set-Cookie,但是浏览器的Application的coo ...