Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9342    Accepted Submission(s): 5739

Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.

 
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 
Output
For each case, output the minimum inversion number on a single line.
 
Sample Input
10
1 3 6 9 0 8 5 7 4 2
 
Sample Output
16
 
Author
CHEN, Gaoli
 
Source
 
代码:
 //线段树实现单点更新,并求和
#include<stdio.h>
#define maxn 5001
struct node{
int lef,rig,sum;
int mid(){ return lef+((rig-lef)>>) ;}
};
node seg[maxn<<];
int aa[maxn+];
void build(int left,int right,int p )
{
seg[p].lef=left;
seg[p].rig=right;
seg[p].sum=;
if(left==right) return ;
int mid=seg[p].mid();
build(left,mid,p<<);
build(mid+,right,p<<|);
}
void updata(int pos,int p,int val)
{
if(seg[p].lef==seg[p].rig)
{
seg[p].sum+=val;
return ;
}
int mid=seg[p].mid();
if(pos<=mid) updata(pos,p<<,val);
else updata(pos,p<<|,val);
seg[p].sum=seg[p<<].sum+seg[p<<|].sum;
}
int query(int be ,int en,int p)
{
if(be<=seg[p].lef&&seg[p].rig<=en)
return seg[p].sum;
int mid=seg[p].mid();
int res=;
if(be<=mid) res+=query(be ,en ,p<<);
if(mid<en) res+=query(be ,en ,p<<|);
return res;
}
int main()
{
int nn,i,ans;
while(scanf("%d",&nn)!=EOF)
{
ans=;
build(,nn-,);
for(i=;i<=nn;i++)
{
scanf("%d",&aa[i]);
updata(aa[i],,);
if(aa[i]!=nn-) ans+=query(aa[i]+,nn-,); //统计比其大的数
}
int min=ans;
for(i=;i<=nn;i++)
{
ans+=nn-*aa[i]-;
if(min>ans) min=ans;
}
printf("%d\n",min);
}
return ;
}
 

HDUOJ---1754 Minimum Inversion Number (单点更新之求逆序数)的更多相关文章

  1. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  2. HDU - 1394 Minimum Inversion Number (线段树求逆序数)

    Description The inversion number of a given number sequence a1, a2, ..., an is the number of pairs ( ...

  3. HDU-1394 Minimum Inversion Number(线段树求逆序数)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  4. Minimum Inversion Number(线段树求逆序数)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  5. hdu1394 Minimum Inversion Number (线段树求逆序数&&思维)

    题目传送门 Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. hdu 1394 Minimum Inversion Number 【线段树求逆序数】

    之前写过树状数组的,再用线段树写一下--- #include<cstdio> #include<cstring> #include<iostream> #inclu ...

  7. HDU - 1394 Minimum Inversion Number(线段树求逆序数---点修改)

    题意:给定一个序列,求分别将前m个数移到序列最后所得到的序列中,最小的逆序数. 分析:m范围为1~n,可得n个序列,求n个序列中最小的逆序数. 1.将序列从头到尾扫一遍,用query求每个数字之前有多 ...

  8. hdu1394--Minimum Inversion Number(线段树求逆序数,纯为练习)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  9. <Sicily>Inversion Number(线段树求逆序数)

    一.题目描述 There is a permutation P with n integers from 1 to n. You have to calculate its inversion num ...

随机推荐

  1. DIV元素不换行

    DIV盒子默认是换行独占100%宽度:DIV盒子没有赋予CSS样式时,默认DIV盒子是独占一行(宽度为100%). 如下默认情况HTML代码: <!DOCTYPE html> <ht ...

  2. 内存及字符串操作篇strlen strchar strcmp strcoll strcpy strdup strstr strtok strspn strrchr bcmp bcopy bzero index memccpy memset

    bcmp(比较内存内容) 相关函数 bcmp,strcasecmp,strcmp,strcoll,strncmp,strncasecmp 表头文件 #include<string.h> 定 ...

  3. 21.重入锁ReentrantLock

    ReentrantLock     重入锁,在需要进行代码同步部分上加锁,但是一定要记得解锁.     类型:公平锁(队列方式进行排队).非公平锁(按照cpu的分配),非公平锁性能要比公平锁性能高,默 ...

  4. WKT

    WKT - 概念 WKT(Well-known text)是一种文本标记语言,用于表示矢量几何对象.空间参照系统及空间参照系统之间的转换.它的二进制表示方式,亦即WKB(well-known bina ...

  5. ILMerge-GUI的使用

    去这里下载: 这里下载ILMerge,http://www.microsoft.com/en-us/download/details.aspx?id=17630 这里下载ILMerge-GUI,htt ...

  6. 【ES】elasticsearch学习笔记

    ES学习 1 优势 1.1 简单 1.1.1 相比Solor配置部署等非常简单 1.2 高效 1.2.1 ES使用Netty作为内部RPC框架,Solor使用Jetty 1.3 插件化 1.3.1 E ...

  7. 如何使用Neofetch个性化显示Linux系统信息

    可用于查看和显示 Linux 系统信息的开源工具和脚本实在太多,Neofetch 也是其中之一,Neofetch 可以以更全面的方式来显示输出详实的 Linux 系统信息,简单地来说,如果你想查看 L ...

  8. 2015年末分享:利用RS修改用户密码

    马上就要2016农历新年了,送点什么给大家呢?我觉得还是分享点技术吧.前不久用户在抱怨为什么登录Cognos Connection的密码不能让我们自己改?相信Cognos开发的很多人知道,Cognos ...

  9. PreferenceScreen的应用

    PreferenceScreen preference是偏好.首选的意思,PreferenceScreen个人翻译成 "偏好显示",明确这个意思就好.就是说依据特点灵活的定义显示内 ...

  10. Spring 在XML中声明切面/AOP

    在Spring的AOP配置命名空间中,我们能够找到声明式切面选择.看以下: <aop:config> <!-- AOP定义開始 --> <aop:pointcut/> ...