C. Coloring Trees
time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input

The first line contains three integers, n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color j. pi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output

Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Examples
Input
3 2 2
0 0 0
1 2
3 4
5 6
Output
10
Input
3 2 2
2 1 2
1 3
2 4
3 5
Output
-1
Input
3 2 2
2 0 0
1 3
2 4
3 5
Output
5
Input
3 2 3
2 1 2
1 3
2 4
3 5
Output
0
Note

In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).

In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is  - 1.

In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.

题目连接:http://codeforces.com/contest/711/problem/C


题意:有n棵树,m种染料。从1到n给未染色的树染色。第i棵树染第ci种色。ci=0表示第i棵树未染色。pi,j表示第i棵树染第j种颜色需要花费的价值。求出1到n全部染色需要花费最少的价值,必须保证有k段颜色。

思路:动态规划。dp[i][j][t]表示前i棵树,第i棵树染第j中染色,有t段颜色的最少花费。如果当前选择的颜色与上一棵树的不同t+1,相同t不变。


代码:

 #include<iostream>
#include<cstdio>
using namespace std;
const __int64 INF=1e12;
__int64 c[],p[][],dp[][][];
int main()
{
int i,j,t,h,n,m,k;
scanf("%d%d%d",&n,&m,&k);
for(i=; i<=n; i++) scanf("%I64d",&c[i]);
for(i=; i<=n; i++)
for(j=; j<=m; j++)
scanf("%I64d",&p[i][j]);
if(k>n)
{
cout<<"-1"<<endl;
return ;
}
for(i=; i<=n; i++)
for(j=; j<=m; j++)
for(t=; t<=n; t++)
dp[i][j][t]=INF;
if(c[]==)
for(j=; j<=m; j++)
dp[][j][]=p[][j];
else dp[][c[]][]=;
for(i=; i<=n; i++)
{
if(c[i]==)
{
for(j=; j<=m; j++)
for(t=; t<=i; t++)
for(h=; h<=m; h++)
{
if(j==h)
dp[i][j][t]=min(dp[i][j][t],dp[i-][h][t]+p[i][j]);
else
dp[i][j][t]=min(dp[i][j][t],dp[i-][h][t-]+p[i][j]);
}
}
else
{
for(t=; t<=i; t++)
for(h=; h<=m; h++)
{
if(c[i]==h)
dp[i][c[i]][t]=min(dp[i][c[i]][t],dp[i-][h][t]);
else
dp[i][c[i]][t]=min(dp[i][c[i]][t],dp[i-][h][t-]);
}
}
}
__int64 ans=INF;
for(j=; j<=m; j++)
ans=min(ans,dp[n][j][k]);
if(ans==INF) cout<<"-1"<<endl;
else printf("%I64d\n",ans);
return ;
}

Codeforces 677C. Coloring Trees dp的更多相关文章

  1. CodeForces 711C Coloring Trees (DP)

    题意:给定n棵树,其中有一些已经涂了颜色,然后让你把没有涂色的树涂色使得所有的树能够恰好分成k组,让你求最少的花费是多少. 析:这是一个DP题,dp[i][j][k]表示第 i 棵树涂第 j 种颜色恰 ...

  2. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

  3. CodeForces #369 C. Coloring Trees DP

    题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少.   K:连续的颜色为一组 ...

  4. codeforces 711C C. Coloring Trees(dp)

    题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  5. C. Coloring Trees DP

    传送门:http://codeforces.com/problemset/problem/711/C 题目: C. Coloring Trees time limit per test 2 secon ...

  6. codeforces 711C Coloring Trees(DP)

    题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...

  7. Codeforces 711 C. Coloring Trees (dp)

    题目链接:http://codeforces.com/problemset/problem/711/C 给你n棵树,m种颜色,k是指定最后的完美值.接下来一行n个数 表示1~n树原本的颜色,0的话就是 ...

  8. 【动态规划】Codeforces 711C Coloring Trees

    题目链接: http://codeforces.com/problemset/problem/711/C 题目大意: 给N棵树,M种颜色,已经有颜色的不能涂色,没颜色为0,可以涂色,每棵树I涂成颜色J ...

  9. CodeForces 711C Coloring Trees

    简单$dp$. $dp[i][j][k]$表示:前$i$个位置染完色,第$i$个位置染的是$j$这种颜色,前$i$个位置分成了$k$组的最小花费.总复杂度$O({n^4})$. #pragma com ...

随机推荐

  1. pdb调试工具

    调试--pdb pdb是基于命令行的调试工具,非常类似gnu的gdb(调试c/c++). 命令 简写命令 作用 break b 设置断点 continue c 继续执行程序 list l 查看当前行的 ...

  2. OpenCL 存储器次序的验证

    ▶ <OpenCL异构并行编程实战>P224 的代码,先放上来,坐等新设备到了再执行 //kernel.cl __global ); // 全局原子对象 __kernel void mem ...

  3. net 编译报错:编辑器或项目正在尝试签出在内存中修改的文件,这将导致保存该文件

    1,报错提示: 编辑器或项目正在尝试签出在内存中修改的文件,这将导致保存该文件. 在生成过程中保存文件是危险的,这可能会在将来导致不正确的生成输出. 是否仍然继续签出? 2,原因:licenses.l ...

  4. 表格(table)

    Title 主机名 端口 操作 1111 10023 查看详情 修改 表头1 表头1 表头1 表头1 1 1 1 1 1 1 1 1 1 <!DOCTYPE html><html l ...

  5. http chunked

    http chunked传输:将信息分段传输 好处: 不用指定content-length字段(总的要传输文件信息的长度),即可以将一整段信息分为若干段分别发送,最后发送chunked长度为0的信息表 ...

  6. visual stdio 工程 宏

    $(SolutionDir)  solution目录 $(ProjectDir) Project目录 $(TargetDir) 目标文件夹,如编译出的exe文件所在的目录 $(Configuratio ...

  7. caffe openpose/Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields配置(转)

    Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields 是CVPR2017的一篇论文,作者称是世界上第一个基于深度学习的 ...

  8. iKcamp|基于Koa2搭建Node.js实战(含视频)☞ 代码分层

    视频地址:https://www.cctalk.com/v/15114923889408 文章 在前面几节中,我们已经实现了项目中的几个常见操作:启动服务器.路由中间件.Get 和 Post 形式的请 ...

  9. Spring 集成Hibernate的三种方式

    首先把hibernate的配置文件hibernate.cfg.xml放入spring的src目录下,并且为了便于测试导入了一个实体类Student.java以及它的Student.hbm.xml文件 ...

  10. 微擎系统 微信支付 get_brand_wcpay_request:fail

    支付授权目录问题,有一个是域名加app的