数据准备

课程中获取数据的方法是从库中直接load_data

from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

我尝试了一下,报这样的错误:[WinError 10054] 远程主机强迫关闭了一个现有的连接。so,我就直接去官网下载了数据集:http://yann.lecun.com/exdb/mnist/。该数据下载后得到的是idx格式数据,具体处理方法参考了这篇博客https://www.jianshu.com/p/84f72791806f,测试可用的源码如下(规则在注释里写得很详细),在后文中会直接调用里边的函数。

import numpy as np
import struct
import matplotlib.pyplot as plt # 训练集文件
train_images_idx3_ubyte_file = 'C:\\Users\\小辉\\Desktop\\MNIST\\train-images.idx3-ubyte'
# 训练集标签文件
train_labels_idx1_ubyte_file = 'C:\\Users\\小辉\\Desktop\\MNIST\\train-labels.idx1-ubyte' # 测试集文件
test_images_idx3_ubyte_file = 'C:\\Users\\小辉\\Desktop\\MNIST\\t10k-images.idx3-ubyte'
# 测试集标签文件
test_labels_idx1_ubyte_file = 'C:\\Users\\小辉\\Desktop\\MNIST\\t10k-labels.idx1-ubyte' def decode_idx3_ubyte(idx3_ubyte_file):
"""
解析idx3文件的通用函数
:param idx3_ubyte_file: idx3文件路径
:return: 数据集
"""
# 读取二进制数据
bin_data = open( train_images_idx3_ubyte_file, 'rb').read() # 解析文件头信息,依次为魔数、图片数量、每张图片高、每张图片宽
offset = 0
fmt_header = '>iiii'
magic_number, num_images, num_rows, num_cols = struct.unpack_from(fmt_header, bin_data, offset)
#print('魔数:%d, 图片数量: %d张, 图片大小: %d*%d' % (magic_number, num_images, num_rows, num_cols)) # 解析数据集
image_size = num_rows * num_cols
offset += struct.calcsize(fmt_header)
fmt_image = '>' + str(image_size) + 'B'
images = np.empty((num_images, num_rows, num_cols))
for i in range(num_images):
#if (i + 1) % 10000 == 0:
#print('已解析 %d' % (i + 1) + '张')
images[i] = np.array(struct.unpack_from(fmt_image, bin_data, offset)).reshape((num_rows, num_cols))
offset += struct.calcsize(fmt_image)
return images def decode_idx1_ubyte(idx1_ubyte_file):
"""
解析idx1文件的通用函数
:param idx1_ubyte_file: idx1文件路径
:return: 数据集
"""
# 读取二进制数据
bin_data = open(idx1_ubyte_file, 'rb').read() # 解析文件头信息,依次为魔数和标签数
offset = 0
fmt_header = '>ii'
magic_number, num_images = struct.unpack_from(fmt_header, bin_data, offset)
#print('魔数:%d, 图片数量: %d张' % (magic_number, num_images)) # 解析数据集
offset += struct.calcsize(fmt_header)
fmt_image = '>B'
labels = np.empty(num_images)
for i in range(num_images):
#if (i + 1) % 10000 == 0:
# print('已解析 %d' % (i + 1) + '张')
labels[i] = struct.unpack_from(fmt_image, bin_data, offset)[0]
offset += struct.calcsize(fmt_image)
return labels def load_train_images(idx_ubyte_file=train_images_idx3_ubyte_file):
"""
TRAINING SET IMAGE FILE (train-images-idx3-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000803(2051) magic number
0004 32 bit integer 60000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?? pixel
0017 unsigned byte ?? pixel
........
xxxx unsigned byte ?? pixel
Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black). :param idx_ubyte_file: idx文件路径
:return: n*row*col维np.array对象,n为图片数量
"""
return decode_idx3_ubyte(idx_ubyte_file) def load_train_labels(idx_ubyte_file=train_labels_idx1_ubyte_file):
"""
TRAINING SET LABEL FILE (train-labels-idx1-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000801(2049) magic number (MSB first)
0004 32 bit integer 60000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
........
xxxx unsigned byte ?? label
The labels values are 0 to 9. :param idx_ubyte_file: idx文件路径
:return: n*1维np.array对象,n为图片数量
"""
return decode_idx1_ubyte(idx_ubyte_file) def load_test_images(idx_ubyte_file=test_images_idx3_ubyte_file):
"""
TEST SET IMAGE FILE (t10k-images-idx3-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000803(2051) magic number
0004 32 bit integer 10000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?? pixel
0017 unsigned byte ?? pixel
........
xxxx unsigned byte ?? pixel
Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black). :param idx_ubyte_file: idx文件路径
:return: n*row*col维np.array对象,n为图片数量
"""
return decode_idx3_ubyte(idx_ubyte_file) def load_test_labels(idx_ubyte_file=test_labels_idx1_ubyte_file):
"""
TEST SET LABEL FILE (t10k-labels-idx1-ubyte):
[offset] [type] [value] [description]
0000 32 bit integer 0x00000801(2049) magic number (MSB first)
0004 32 bit integer 10000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
........
xxxx unsigned byte ?? label
The labels values are 0 to 9. :param idx_ubyte_file: idx文件路径
:return: n*1维np.array对象,n为图片数量
"""
return decode_idx1_ubyte(idx_ubyte_file) def run():
train_images = load_train_images()
train_labels = load_train_labels()
test_images = load_test_images()
test_labels = load_test_labels() # 查看前十个数据及其标签以读取是否正确
for i in range(10):
print(train_labels[i])
plt.imshow(train_images[i], cmap='gray')
plt.show()
print('done') if __name__ == '__main__':
run()

测试用的源码

数据预处理

导入相关包依赖及预处理函数

import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.optimizers import SGD, Adam
from keras.utils import np_utils #clean data
def load_dataset():
x_train, y_train = load_train_images(), load_train_labels()
x_test, y_test = load_test_images(), load_test_labels()
number = 60000
x_train, y_train = x_train[0:number], y_train[0:number]
x_train = x_train.reshape(number, 28*28)
x_test = x_test.reshape(x_test.shape[0], 28*28)
x_train, x_test = x_train.astype('float32'), x_test.astype('float32')
y_train, y_test = np_utils.to_categorical(y_train, 10), np_utils.to_categorical(y_test, 10)
x_train, x_test = x_train / 255, x_test / 255
return (x_train, y_train), (x_test, y_test)

到此,我们得到了训练和测试网络所需要的数据。

网络的搭建及训练结果

搭建网络训练结果
(x_train, y_train), (x_test, y_test) = load_dataset()
model = Sequential()
#搭建三层网络
model.add(Dense(input_dim=28*28,units=633,activation='sigmoid'))
model.add(Dense(units=633,activation='sigmoid'))
model.add(Dense(units=10,activation='softmax')) model.compile(loss='mse',optimizer=SGD(lr=0.1),metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=100,epochs=20)
result = model.evaluate(x_test,y_test)
print('Test loss:', result[0])
print('Accuracy:', result[1])

效果如下图所示:

改动地方主要为:

  • 激励函数由sigmoid改为relu
  • loss function由mse改为categorical_crossentropy
  • 增加了Dropout,防止过拟合

改动后构建模型代码:

#搭建网络训练结果
(x_train, y_train), (x_test, y_test) = load_dataset()
model = Sequential()
#搭建三层网络
model.add(Dense(input_dim=28*28,units=700,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(units=700,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(units=10,activation='softmax')) model.compile(loss='categorical_crossentropy',optimizer=SGD(lr=0.1),metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=100,epochs=20,validation_split=0.05)
result = model.evaluate(x_test,y_test) print('Test loss:', result[0])
print('Accuracy:', result[1])

效果如下所示:

得到了比较好的测试结果。其中,最主要的还是激励函数影响。
1. 采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。
2. 对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失,从而无法完成深层网络的训练。
3. Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

参考:https://blog.csdn.net/waple_0820/article/details/79415397

手写数字识别---demo的更多相关文章

  1. 【问题解决方案】Keras手写数字识别-ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接

    参考:台大李宏毅老师视频课程-Keras-Demo 在载入数据阶段报错: ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接 Google之 ...

  2. 【机器学习】李宏毅机器学习-Keras-Demo-神经网络手写数字识别与调参

    参考: 原视频:李宏毅机器学习-Keras-Demo 调参博文1:深度学习入门实践_十行搭建手写数字识别神经网络 调参博文2:手写数字识别---demo(有小错误) 代码链接: 编程环境: 操作系统: ...

  3. 利用神经网络算法的C#手写数字识别

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70. ...

  4. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  5. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  6. 利用神经网络算法的C#手写数字识别(一)

    利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwri ...

  7. C#中调用Matlab人工神经网络算法实现手写数字识别

    手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写 ...

  8. CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  9. 【深度学习系列】PaddlePaddle之手写数字识别

    上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下.不过呢,这块内容太复杂了,所以就简单的介绍一下padd ...

随机推荐

  1. PL/Sql快速执行 insert语句的.sql文件

    当全是 insert语句的.sql文件太大时(insert 语句条数太大),直接打开执行sql文件,pl/sql会卡死. 这是可以用pl/sql的命令窗口来执行.sql文件,操作步骤如下: 1.新建命 ...

  2. Java 中>>和>>>的区别

    Java 中>>和>>>的区别 Java中的位运算符: >>表示右移,如果该数为正,则高位补0,若为负数,则高位补1: >>>表示无符号右移 ...

  3. 2018.10.23 vijo1243生产产品(单调队列优化dp)

    传送门 这道单调队列真的有点难写啊. 方程感觉挺简单的. f[i][j]f[i][j]f[i][j]表示在第iii个车间结束前jjj次步骤的最小代价. 然后用单调队列毒瘤优化一下就行了. 代码: #i ...

  4. 2018.10.20 NOIP模拟 蛋糕(线段树+贪心/lis)

    传送门 听说是最长反链衍生出的对偶定理就能秒了. 本蒟蒻直接用线段树模拟维护的. 对于第一维排序. 维护第二维的偏序关系可以借助线段树/树状数组维护逆序对的思想建立权值线段树贪心求解. 代码

  5. phalApi框架打印SQL语句

    http://demo.phalapi.net/?service=User.getBaseInfo&user_id=1&__sql__=1

  6. DB2 runstats、reorgchk、reorg 命令【转载】

    1.runstats runsats可以搜集表的信息,也可以搜集索引信息.作为runstats本身没有优化的功能,但是它更新了统计信息以后,可以让DB2优化器使用最新的统计信息来进行优化,这样优化的效 ...

  7. Caused by: org.hibernate.InvalidMappingException: Could not parse mapping document from resource Caused by: org.hibernate.DuplicateMappingException: duplicate import: Person refers to both cn.itcast.

    此错误是说有两个相同的名字的配置文件,所以不知道查找哪个.解决方法就是把不需要的那个配置文件删除. 删除mapping中不需要的那个xml文件即可

  8. java Exception 出错的栈信息打印到日志中 打印堆栈信息

    我们在开发程序的过程当中,日志是必不可少的工具,这有助于我们分析问题的原因,和出错的详细信息,而java的异常机制又会方便且迅速的帮我们找到出错行的位置. try { .... } catch (Ex ...

  9. 基于图像切换器(imageSwitcher)的支持动画的图片浏览器

    利用GridView和ImageSwitcher的基本用法 public class MainActivity extends Activity { int[] imageIds = new int[ ...

  10. RabbitMQ添加rabbitmqadmin和其使用方法(类似Redis的redis-cli)

    一:先进入rabbitmq的安装目录下的bin目录,执行wget -c http://localhost:15672/cli/rabbitmqadmin:(前提是plugin management已经 ...