JSOI2010 满汉全席
题目链接:戳我
一个2-SAT的模板题。
(什么是2-SAT呢?就是解决一个情况两种决策的问题,我们根据“选了其中一个点A就必须选一个点B的原则,从A向B连边。最后判断如果在一个强连通分量里面,就是无解。”)
注意一下输入的转换就好啦!QAQ
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX 1010
struct Line{int v,next;}e[100000];
int h[MAX],cnt=1,T;
inline void add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,m,a[MAX][2];
inline int get()
{
char s[10];
int cur=0,x=0;
scanf("%s",s);
if(s[0]=='m') cur=n;
for(int i=1,len=strlen(s);i<len;i++)
x=x*10+s[i]-'0';
x+=cur;
return x;
}
bool id[MAX][MAX];
int dfn[MAX],low[MAX],st[MAX],top,tim,G[MAX];
bool ins[MAX];
void init()
{
memset(id,0,sizeof(id));
memset(h,0,sizeof(h));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(ins,0,sizeof(ins));
memset(G,0,sizeof(G));
cnt=0;top=tim=0;
}
inline void tarjan(int x)
{
dfn[x]=low[x]=++tim;
st[++top]=x;
ins[x]=1;
for(int i=h[x];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v]) tarjan(v),low[x]=min(low[x],low[v]);
else if(ins[v]) low[x]=min(low[x],dfn[v]);
}
if(dfn[x]==low[x])
{
int v;
++cnt;
if(st[top]==x) {G[x]=cnt;ins[x]=0;top--;}
else
{
do
{
v=st[top];
top--;
G[v]=cnt;
ins[v]=0;
// printf("cnt=%d v=%d\n",cnt,v);
}while(v!=x);
}
}
}
bool check()
{
for(int i=1;i<=n;++i)
if(G[i]==G[i+n])return false;
return true;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=m;++i)a[i][0]=get(),a[i][1]=get();
for(int i=1;i<=m;++i)
for(int j=i+1;j<=m;++j)
{
if(abs(a[i][0]-a[j][0])==n)
id[a[i][0]][a[j][1]]=id[a[j][0]][a[i][1]]=1;
if(abs(a[i][0]-a[j][1])==n)
id[a[i][0]][a[j][0]]=id[a[j][1]][a[i][1]]=1;
if(abs(a[i][1]-a[j][0])==n)
id[a[i][1]][a[j][1]]=id[a[j][0]][a[i][0]]=1;
if(abs(a[i][1]-a[j][1])==n)
id[a[i][1]][a[j][0]]=id[a[j][1]][a[i][0]]=1;
}
for(int i=1;i<=n+n;++i)
for(int j=1;j<=n+n;++j)
if(id[i][j])
add(i,j);
for(int i=1;i<=n+n;++i)
if(!dfn[i])
tarjan(i);
if(check()) printf("GOOD\n");
else printf("BAD\n");
}
}
JSOI2010 满汉全席的更多相关文章
- bzoj1823 [JSOI2010]满汉全席(2-SAT)
1823: [JSOI2010]满汉全席 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1246 Solved: 598[Submit][Status ...
- BZOJ 1823: [JSOI2010]满汉全席( 2-sat )
2-sat...假如一个评委喜好的2样中..其中一样没做, 那另一样就一定要做, 这样去建图..然后跑tarjan. 时间复杂度O((n+m)*K) ------------------------- ...
- BZOJ_1823_[JSOI2010]满汉全席_2-sat+tarjan
BZOJ_1823_[JSOI2010]满汉全席_2-sat 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1823 分析:一道比较容易看出来的 ...
- 【BZOJ1823】[JSOI2010]满汉全席(2-sat)
[BZOJ1823][JSOI2010]满汉全席(2-sat) 题面 BZOJ 洛谷 题解 很明显的\(2-sat\)模板题,还不需要输出方案. 对于任意两组限制之间,检查有无同一种石材要用两种不同的 ...
- 【BZOJ1823】[JSOI2010]满汉全席 2-SAT
[BZOJ1823][JSOI2010]满汉全席 Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只 ...
- 洛谷 P4171 [JSOI2010]满汉全席 解题报告
P4171 [JSOI2010]满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高 ...
- Bzoj1823 [JSOI2010]满汉全席
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1640 Solved: 798 Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的 ...
- 【BZOJ1823】 [JSOI2010]满汉全席
Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而 ...
- BZOJ1823[JSOI2010]满汉全席——2-SAT+tarjan缩点
题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过 ...
- 【刷题】BZOJ 1823 [JSOI2010]满汉全席
Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而 ...
随机推荐
- Spring框架的核心功能之AOP概述
1. 什么是AOP的技术? * 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程 * AOP是一种编程范式,隶属于软工范畴,指导开发者如何组织程序结构 ...
- 解决ios手机页面overflow scroll滑动很卡的问题
在移动端html中经常出现横向/纵向滚动的效果,但是在iPhone中滚动速度很慢,感觉不流畅,有种卡卡的感觉,但是在安卓设备上没有这种感觉; 要解决这个问题很简单: 一行代码搞定 -webkit-ov ...
- pip安装python模块方法
网上搜索了很多,主流的配置方法分为两种: 摘自 1.http://www.jb51.net/article/83617.htm 安装pip的包并确定pip安装时的镜像源地址,国内常用的地址有: htt ...
- c++11多线程学习笔记之二 mutex使用
// 1111111.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #include ...
- 写点C++ 学习记录 充数
#include "stdafx.h" #include <cstdlib> #include <iostream> using namespace std ...
- Windows10(uwp)开发中的侧滑
还是在持续的开发一款Windows10的应用中,除了上篇博客讲讲我在Windows10(uwp)开发中遇到的一些坑,其实还有很多不完善的地方,比如(UIElement.Foreground).(Gra ...
- 2018.09.05 bzoj2726: [SDOI2012]任务安排(斜率优化dp+二分)
传送门 跟Ti" role="presentation" style="position: relative;">TiTi为正数的时候差不多. ...
- Linux下一个简单sniffer的实现
Sniffer(嗅探器)是一种基于被动侦听原理的网络分析方式.将网络接口设置在监听模式,便可以将网上传输的源源不断的信息截获.对于网络监听的基本原理我们不在赘述,我们也不开启网卡的混杂模式,因为现在的 ...
- html使用技巧
line-height: 27px; /* lineheight和height保持一致就能达到文本垂直居中*/ .top_content li { list-style-image: url(../ ...
- OpenGl 绘制一个立方体
OpenGl 绘制一个立方体 为了绘制六个正方形,我们为每个正方形指定四个顶点,最终我们需要指定6*4=24个顶点.但是我们知道,一个立方体其实总共只有八个顶点,要指定24次,就意味着每个顶点其实重复 ...