算法导论第九章 第K顺序统计量
1.第K顺序统计量概念
在一个由n个元素组成的集合中,第k个顺序统计量是该集合中第k小的元素。例如,最小值是第1顺序统计量,最大值是第n顺序统计量。
2.求Top K元素与求第K顺序统计量不同
Top K元素:是指求数组中的最大(或者最小的)K个元素,一般K比较小,采用最大(或者最小)堆实现。之前写过的一篇有关文章是:
海量数据处理的 Top K算法(问题) 小顶堆实现
第K顺序统计量:只求解数组中的第K大元素,是求解一个元素。一般使用“快速排序”的思想,将数组划分求解。
3.第K顺序统计量求解代码
这是求解第K统计量代码,即第k小。如果要求第K大,可以根据数组长度转化为第n-k小。
public class TheK {
int array[]={12,435,123,1,345,546,12,546,7,86,354,7};
int paarray(int i,int j)
{
int pivot=array[i]; //用区间的第1个记录作为基准
while(i<j)
{ //从区间两端交替向中间扫描,直至i=j为止
while(i<j&&array[j]>=pivot) //pivot相当于在位置i上
j--;
if(i<j)
array[i++]=array[j]; //相当于交换array[i]和array[j],交换后i指针加1
while(i<j&&array[i]<=pivot) //pivot相当于在位置j上
i++;
if(i<j)
array[j--]=array[i]; //相当于交换array[i]和array[j],交换后j指针减1
}
array[i]=pivot; //基准记录已被最后定位
return i;
}
void getK(int k)
{
int mid=paarray(0,array.length-1);
while(mid!=k)
{
if(mid<k)
mid=paarray(mid+1,array.length-1);
else
mid=paarray(0,mid-1);
}
System.out.println("The num of "+k+" is:"+array[k]);
}
public static void main(String args[]){
//查找第6个元素。数组元素编号从0开始
new TheK().getK(6);
}
}
算法导论第九章 第K顺序统计量的更多相关文章
- 算法导论 第九章 中位数和顺序统计量(python)
第i个顺序统计量:该集合中第i小的元素(建集合排序后第i位 当然算法可以不排序) 中位数:集合中的中点元素 下中位数 上中位数 9.1最大值和最小值 单独的max或min每个都要扫一遍 n-1次比较 ...
- C++算法导论第九章O(n)期望选择序列第i小的数字
#include<iostream> #include<vector> #include<algorithm> #include<time.h> usi ...
- 算法导论 第一章and第二章(python)
算法导论 第一章 算法 输入--(算法)-->输出 解决的问题 识别DNA(排序,最长公共子序列,) # 确定一部分用法 互联网快速访问索引 电子商务(数值算 ...
- 为什么我要放弃javaScript数据结构与算法(第九章)—— 图
本章中,将学习另外一种非线性数据结构--图.这是学习的最后一种数据结构,后面将学习排序和搜索算法. 第九章 图 图的相关术语 图是网络结构的抽象模型.图是一组由边连接的节点(或顶点).学习图是重要的, ...
- 算法导论练习6.5-8 k路合并
题目: 请给出一个时间为O(nlgk).用来将k个已排序链表合并为一个排序链表的算法.此处n为所有输入链表中元素的总数.(提示:用一个最小堆来做k路合并. 看到题目第个想到的是归并排序过程中的归并操作 ...
- 《算法导论》— Chapter 9 中位数和顺序统计学
序 在算法导论的第二部分主要探讨了排序和顺序统计学,第六章~第八章讨论了堆排序.快速排序以及三种线性排序算法.该部分的最后一个章节,将讨论顺序统计方面的知识. 在一个由n个元素组成的集合中,第i个顺序 ...
- 《算法导论》学习总结 — XX.第23章 最小生成树
一.什么叫最小生成树 一个无向连通图G=(V,E),最小生成树就是联结所有顶点的边的权值和最小时的子图T,此时T无回路且连接所有的顶点,所以它必须是棵树. 二.为什么要研究最小生成树问题 <算法 ...
- 【机器学习实战 第九章】树回归 CART算法的原理与实现 - python3
本文来自<机器学习实战>(Peter Harrington)第九章"树回归"部分,代码使用python3.5,并在jupyter notebook环境中测试通过,推荐c ...
- 《算法导论》第二章demo代码实现(Java版)
<算法导论>第二章demo代码实现(Java版) 前言 表示晚上心里有些不宁静,所以就写一篇博客,来缓缓.囧 拜读<算法导论>这样的神作,当然要做一些练习啦.除了练习题与思考题 ...
随机推荐
- 使用Generator(小黑鸟)反向生成Java项目(IDEA + Maven)
一.生成Maven项目 二.配置pom.xml文件 通用代码 <properties> <!-- 设置项目编码编码 --> <project.build.sourceEn ...
- 《Playing hard exploration games by watching YouTube》论文解读
论文链接 油管链接 一.摘要 当环境奖励特别稀疏的时候,强化学习方法通常很难训练(traditionally struggle).一个有效的方式是通过人类示范者(human demonstrato ...
- Bzoj2164 采矿(线段树+树链剖分)
题面 Bzoj 题解 对于每个节点,我们可以用树链剖分和线段树维护以下信息: 单独在某个点分配\(i\)个人的最大收益(可以\(O(m)\)计算) 分配\(i\)的最大收益(可以\(O(m^2)\)计 ...
- 【基础知识】C#数据库中主键类型的选择
主键在数据库中占有很大的地位,对于表的关联性,和数据的唯一识别性有重要的作用: 1,在C#开发中,Int自增字段和Guid(数据库中是uniqueidentifier类型)可设置为主键: 1>G ...
- CSS3组件化之菊花loading
<div class="juhua-loading"> <div class="jh-circle"></div> < ...
- Revit二次开发示例:AutoStamp
该示例中,在Revit启动时添加打印事件,在打印时向模型添加水印,打印完成后删除该水印. #region Namespaces using System; using System.Collect ...
- python中 .write 无法向文件写入内容
问题代码如下 links = open("new") out = open("out.txt","w+") for link in link ...
- Linux设备驱动模型(sysfs)
<总线模型概述> 随着技术的发展,系统的拓扑结构也越来越复杂,对热插拔.跨平台移植性的要求越来越高,从Linux2.6内核开始提供全新的设备模型.将所有的驱动挂载到计算机的总线上(比如US ...
- Winform 串口通讯之读卡器
老板给我的第一个硬件就是一个读卡器, 说让我做一下试试,于是从网上查了查就写了出来,相当的简单. 但是后来还有一个地磅的串口通讯,我整整搞了一天. 在窗体类的构造函数中写入 Form.CheckFor ...
- [LeetCode] Max Points on a Line 题解
题意 Given n points on a 2D plane, find the maximum number of points that lie on the same straight lin ...