In the last post we saw how to run a MapReduce job on Hadoop. Now we're going to analyze how a MapReduce program works. And, if you don't know what MapReduce is, the short answer is "MapReduce is a programming model for processing large data sets with a parallel, distributed algorithm on a cluster" (from Wikipedia).

Let's take a look at the source code: we can find a Java main method that is called from Hadoop, and two inner static classes, the mapper and the reducer. The code for the mapper is:

public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

        private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); @Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}

As we can see, this class extends Mapper, which - as its JavaDoc says - maps input key/value pairs to a set of intermediate key/value pairs; when the job starts, the Hadoop framework passes to the mapper a chunk of data (a subset of the whole dataset) to process. The output of the mapper will be the input of the reducers (it's not the complete story, but we'll arrive there in another post). The Mapper uses Java generics to specify what kind of data will process; in this example, we use a class that extends Mapper and specifies Object and Text as the classes of key/value pairs in input, and Text and IntWritable as the classes of key/value pairs for the output to the reducers (we'll see the details of those classes in a moment). 
Let's examine the code: there's only one overridden method, the map() that takes the key/value pair as arguments and the Hadoop context; every time this method is called by Hadoop, the method receives an offset of the file where the value is as the key, and a line of the text file we're reading as the value. 
Hadoop has some basic types that ore optimized for network serialization; here is a table with a few of them:

Java type Hadoop type
Integer IntWritable
Long LongWritable
Double DoubleWritable
String TextWritable
Map MapWritable
Array ArrayWritable

Now it's easy to understand what this method does: for every line of the book it receives, it uses a StringTokenizer to split the line into every single word; then it sets the word in the Textobject and maps it the the value of 1; then writes it to the mappers via the Hadoop context.

Let's now look at the reducer:

public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); @Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}

This time we have the first two arguments of the overridden method reduce that are the same type of the last two of the TokenizerMapper class; that's because - as we said - the mapper outputs the data that the reducer will use as an input. The Hadoop framework takes care of calling this method for every key that comes from the mappers; as we saw before, the keys are the words of the file we're counting the words of. 
The reduce method now has to sum all the occurrences of every single word, so it initializes a sum variable to 0 and then loops over all the values for that specific key that it receives from the mappers. For every word it updates the sum variable with the value mapped to that key. At the end of the loop, when all the occurrences of that word are counted, the method sets the value obtained into an IntWritable object and gives it to the Hadoop context to be outputted to the user.

We're now at the main method of the class, which is the one that is called by Hadoop when it's executed as a JAR file.

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

In the method, we first setup a Configuration object, then we check for the number of arguments passed to it; If the number of arguments is correct, we create a Job object and we set a few values for making it work. Let's dive into the details:

  • setJarByClass: sets the Jar by finding where a given class came from; this needs an explanation: Hadoop distributes the code to execute to the cluster as a JAR file; instead of specifying the name of the JAR, we tell Hadoop the name of the class that every instance on the cluster has to look for inside its classpath
  • setMapperClass: sets the class that will be executed as the mapper
  • setCombinerClass: sets the class that will be executed as the combiner (we'll explain what is a combiner in a future post)
  • setReducerClass: sets the class that will be executed as the reducer
  • setOutputKeyClass: sets the class that will be used as the key for outputting data to the user
  • setOutputValueClass: sets the class that will be used as the value for outputting data to the user

Then we say to Hadoop where it can find the input with the FileInputFormat.addInputPath() method and where it has to write the output with the FileOutputFormat.setOutputPath()method. The last method call is the waitForCompletion(), that submits the job to the cluster and waits for it to finish.

Now that the mechanism of a MapReduce job is more clear, we can start playing with it.

from: http://andreaiacono.blogspot.com/2014/02/mapreduce-job-explained.html

MapReduce任务分析与讨论MapReduce job explained的更多相关文章

  1. MapReduce教程(一)基于MapReduce框架开发<转>

    1 MapReduce编程 1.1 MapReduce简介 MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算,用于解决海量数据的计算问题. MapReduce分成了两个部分: ...

  2. Migrating from MapReduce 1 (MRv1) to MapReduce 2 (MRv2, YARN)...

    This is a guide to migrating from Apache MapReduce 1 (MRv1) to the Next Generation MapReduce (MRv2 o ...

  3. 使用Cloudera Manager搭建MapReduce集群及MapReduce HA

    使用Cloudera Manager搭建MapReduce集群及MapReduce HA 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   一.通过CM部署MapReduce On ...

  4. 【MapReduce】一、MapReduce简介与实例

    (一)MapReduce介绍 1.MapReduce简介   MapReduce是Hadoop生态系统的一个重要组成部分,与分布式文件系统HDFS.分布式数据库HBase一起合称为传统Hadoop的三 ...

  5. hadoop2.2编程:从default mapreduce program 来理解mapreduce

    下面写一个default mapreduce 的程序: import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapr ...

  6. Top N之MapReduce程序加强版Enhanced MapReduce for Top N items

    In the last post we saw how to write a MapReduce program for finding the top-n items of a dataset. T ...

  7. Python实现MapReduce,wordcount实例,MapReduce实现两表的Join

    Python实现MapReduce 下面使用mapreduce模式实现了一个简单的统计日志中单词出现次数的程序: from functools import reduce from multiproc ...

  8. yarn/mapreduce工作机制及mapreduce客户端代码编写

    首先需要知道的就是在老版本的hadoop中是没有yarn的,mapreduce既负责资源分配又负责业务逻辑处理.为了解耦,把资源分配这块抽了出来,形成了yarn,这样不仅mapreudce可以用yar ...

  9. 【MapReduce】三、MapReduce运行机制

      通过前面对map端.reduce端以及整个shuffle端工作流程的介绍,我们已经了解了MapReduce的并行运算模型,基本可以使用MapReduce进行编程,那么MapRecude究竟是如何执 ...

随机推荐

  1. 【LOJ】#2057. 「TJOI / HEOI2016」游戏

    题解 我并不会做,我觉得很像网络流但是毫无建图思路 我猜了个贪心,写了一下--啥过了90分?!这数据是有多水啊.. 哦又是行列拆点 不过要按照'#'进行拆点,也就是一段横着的区间只能放一个炸弹,一段竖 ...

  2. Bootstrap入门六:表单

    表单主要包含表单域.输入框.下拉框.单选框.多选框和按钮等控件. 1.基本实例 单独的表单控件会被自动赋予一些全局样式.所有设置了 .form-control 类的 <input>.< ...

  3. xshell连接linux,切换焦点,自动执行ctrl+c

    这几天发现 xshell 连接 linux 的时候,无缘无故的执行了 ctrl+c,导致 执行界面 终端,比方说 ,hbase shell 执行窗口命令 ,每次切换 窗口焦点之后,就终止了.百度后 发 ...

  4. zoj-1610线段树刷题

    title: zoj-1610线段树刷题 date: 2018-10-16 16:49:47 tags: acm 刷题 categories: ACM-线段树 概述 这道题是一道简单的线段树区间染色问 ...

  5. 获取类的属性并排除特定属性(getType().GetProperties())

    当获取一个类型(class)的所有属性时,想排除指定属性,该如何操作? 比如:EF中一个实体类型UserEntity,通过反射获取这个类的属性时,想排除这个为映射的字段ID 使用以下方法即可! Pro ...

  6. URL的组成

    饮水思源 http://blog.csdn.net/ergouge/article/details/8185219 http://www.cnblogs.com/kaituorensheng/p/37 ...

  7. 项目Alpha冲刺——代码规范、本次冲刺任务与计划

    作业格式 课程名称:软件工程1916|W(福州大学) 作业要求:项目Alpha冲刺(团队) 团队名称: 那周余嘉熊掌将得队 作业目标:代码规范.本次冲刺任务与计划 团队信息: 队员学号 队员姓名 博客 ...

  8. springBoot application.properties 基础配置

    # 文件编码 banner.charset= UTF-8 # 文件位置 banner.location= classpath:banner.txt # 日志配置 # 日志配置文件的位置. 例如对于Lo ...

  9. 【原创】自己动手写的一个查看函数API地址的小工具

    C开源代码如下: #include <stdio.h> #include <windows.h> #include <winbase.h> typedef void ...

  10. [POI2015]Wilcze doły

    [POI2015]Wilcze doły 题目大意: 给定一个长度为\(n(n\le2\times10^6)\)的数列\(A(1\le A_i\le10^9)\),可以从中选取不超过\(d\)个连续数 ...