【bzoj4804】欧拉心算

Description

给出一个数字\(N\),计算

\[\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))
\]

Input

第一行为一个正整数\(T\),表示数据组数。

接下来\(T\)行为询问,每行包含一个正整数\(N\)。

\(T\le 5000,N\le 10^7\)

Output

按读入顺序输出答案


很多方法

可以推式子到

\[\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor^2\sum_{k|T}\varphi(k)\mu(\frac{T}{k})
\]

然后把后面的筛出来就行了

也可以得到

\[\sum_{d=1}^n(\varphi(d)(2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i)-1))
\]

然后搞就行了

后面的式子化解用到了定义

\[\sum_{i=1}^k\sum_{j=1}^i[\gcd(i,j)=1]=\sum_{i=1}^k\varphi(i)
\]


#include <cstdio>
#include <cctype>
#define ll long long
const int BufferSize=1<<16;
namespace Fast{
const int LEN=10000000;
char inp[LEN],outp[LEN];
int tmp[20];
int inpos,outpos;
void init(){
fread(inp,1,LEN,stdin);
inpos=0; outpos=0;
}
char GetChar(){return inp[inpos++];}
int read(){
int ret=0; char ch=GetChar();
while (ch<'0'||ch>'9') ch=GetChar();
while ('0'<=ch&&ch<='9') ret=ret*10+ch-'0',ch=GetChar();
return ret;
}
void PutChar(char ch){outp[outpos++]=ch;}
void print(ll x){
int pos=0;
if (!x) tmp[++pos]=0;
else
while (x) tmp[++pos]=x%10,x/=10;
for (int i=pos;i>=1;--i) PutChar(tmp[i]+'0');
}
void Print(){fwrite(outp,1,outpos,stdout);}
}
#define ll long long
const int N=1e7+1;
int pri[N],ispri[N],a[N],b[N],cnt;
ll f[N];
void init()
{
b[1]=f[1]=1;
for(register int i=2;i<N;i++)
{
if(!ispri[i])
{
pri[++cnt]=i;
f[i]=i-2;
a[i]=1;
b[i]=i;
}
for(register int d,j=1,x;j<=cnt&&i*pri[j]<N;j++)
{
x=i*pri[j];
ispri[x]=1;
if(i%pri[j])
{
a[x]=1;
b[x]=pri[j];
f[x]=f[i]*f[pri[j]];
}
else
{
a[x]=a[i]+1;
b[x]=b[i]*pri[j];
d=i/b[i];
if(d==1)
f[x]=b[i]/pri[j]*(pri[j]-1)*(pri[j]-1);
else
f[x]=f[d]*f[b[i]*pri[j]];
break;
}
}
}
for(int i=2;i<N;i++) f[i]+=f[i-1];
}
int main()
{
Fast::init();
init();
int T,n;T=Fast::read();
while(T--)
{
n=Fast::read();
ll ans=0;
for(register int d,l=1,r;l<=n;l=r+1)
{
d=n/l,r=n/d;
ans+=1ll*d*d*(f[r]-f[l-1]);
}
Fast::print(ans),Fast::PutChar(' ');
}
Fast::Print();
return 0;
}

2018.12.19

【bzoj4804】欧拉心算 解题报告的更多相关文章

  1. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  2. [BZOJ4804]欧拉心算

    题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))\] 多组数据,\(n\le10^7\). sol SBT 单组数据\(O(\sqrt n ...

  3. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

  4. bzoj4804: 欧拉心算 欧拉筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...

  5. 并不对劲的bzoj4804:欧拉心算

    题目大意 \(t\)(\(t\leq5000\))组询问,每次询问给出\(n\)(\(n\leq10^7\)),求: \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(gcd(i, ...

  6. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  7. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  8. BZOJ_4804_欧拉心算_欧拉函数

    BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N&l ...

  9. bzoj 4804 欧拉心算 欧拉函数,莫比乌斯

    欧拉心算 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 408  Solved: 244[Submit][Status][Discuss] Descr ...

随机推荐

  1. MySQL两种引擎的比较

    MyISAM,InnoDB主要区别: 1.MyISAM是非事物安全的,InnoDB是事物安全的. 事物安全的特点为更安全,遇到问题会自动恢复或从备份加事物日志回复,如果更新失败,你的所有改变都变回原来 ...

  2. Python 3 利用机器学习模型 进行手写体数字检测

    0.引言 介绍了如何生成手写体数字的数据,提取特征,借助 sklearn 机器学习模型建模,进行识别手写体数字 1-9 模型的建立和测试. 用到的几种模型: 1. LR,Logistic Regres ...

  3. k8s环境搭建--基于kubeadm方法

    环境 master node: 数量 1, 系统 ubuntu 16.04_amd64 worker node: 数量 1, 系统 ubuntu 16.04_amd64 kubernetes 版本: ...

  4. 机器学习基础 --- numpy的基本使用

    一.numpy的简介 numpy是Python的一种开源的数值计算扩展库.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该 ...

  5. React Native iOS 离线包

    平时使用React Native 时候, js代码和图片资源运行在一个Debug Server上(需要cd 到RN目录,然后终端执行 npm start 命令开启本地服务 ).每次更新代码之后只需要使 ...

  6. 通过NPM快速发布你的NodeJS模块(组件包)

    1.更新 NPM - [ npm install -g npm | 该步骤可选:最好使用新版本] 楼主当前版本号 2.6.1 ,如果更新报错,可以尝试 国内淘宝镜像 $ npm -v 2.6.1 // ...

  7. Daily Srum 10.26

    Daily Scrum Meeting 虽然TFS的相关使用已经在上面贴出来一段时间,但是要运用TFS还是有些困难的,特别是TFS的代码管理机制,所以我们让部分人先弄清楚,然后再教授给其他人.终于大家 ...

  8. 20172324《Java程序设计》第二周学习总结

    20172324<Java程序设计>第2周学习总结 教材学习内容总结 了解了字符串及其拼接和转义序列的使用. Java的基本数据类型. 定义数据转换类型和实现其转换的方法. Scanner ...

  9. Sprint6

    进展:今天更改一下我们的计划,从实现主要功能开始,及闹钟和事件提醒部分.查看了一些有关闹钟部分的资料.

  10. my everying

    evering -> everything 一.请回望暑假时的第一次作业,你对于软件工程课程的想象 1)对比开篇博客你对课程目标和期待,"希望通过实践锻炼,增强计算机专业的能力和就业竞 ...