【bzoj4804】欧拉心算 解题报告
【bzoj4804】欧拉心算
Description
给出一个数字\(N\),计算
\]
Input
第一行为一个正整数\(T\),表示数据组数。
接下来\(T\)行为询问,每行包含一个正整数\(N\)。
\(T\le 5000,N\le 10^7\)
Output
按读入顺序输出答案
很多方法
可以推式子到
\]
然后把后面的筛出来就行了
也可以得到
\]
然后搞就行了
后面的式子化解用到了定义
\]
#include <cstdio>
#include <cctype>
#define ll long long
const int BufferSize=1<<16;
namespace Fast{
const int LEN=10000000;
char inp[LEN],outp[LEN];
int tmp[20];
int inpos,outpos;
void init(){
fread(inp,1,LEN,stdin);
inpos=0; outpos=0;
}
char GetChar(){return inp[inpos++];}
int read(){
int ret=0; char ch=GetChar();
while (ch<'0'||ch>'9') ch=GetChar();
while ('0'<=ch&&ch<='9') ret=ret*10+ch-'0',ch=GetChar();
return ret;
}
void PutChar(char ch){outp[outpos++]=ch;}
void print(ll x){
int pos=0;
if (!x) tmp[++pos]=0;
else
while (x) tmp[++pos]=x%10,x/=10;
for (int i=pos;i>=1;--i) PutChar(tmp[i]+'0');
}
void Print(){fwrite(outp,1,outpos,stdout);}
}
#define ll long long
const int N=1e7+1;
int pri[N],ispri[N],a[N],b[N],cnt;
ll f[N];
void init()
{
b[1]=f[1]=1;
for(register int i=2;i<N;i++)
{
if(!ispri[i])
{
pri[++cnt]=i;
f[i]=i-2;
a[i]=1;
b[i]=i;
}
for(register int d,j=1,x;j<=cnt&&i*pri[j]<N;j++)
{
x=i*pri[j];
ispri[x]=1;
if(i%pri[j])
{
a[x]=1;
b[x]=pri[j];
f[x]=f[i]*f[pri[j]];
}
else
{
a[x]=a[i]+1;
b[x]=b[i]*pri[j];
d=i/b[i];
if(d==1)
f[x]=b[i]/pri[j]*(pri[j]-1)*(pri[j]-1);
else
f[x]=f[d]*f[b[i]*pri[j]];
break;
}
}
}
for(int i=2;i<N;i++) f[i]+=f[i-1];
}
int main()
{
Fast::init();
init();
int T,n;T=Fast::read();
while(T--)
{
n=Fast::read();
ll ans=0;
for(register int d,l=1,r;l<=n;l=r+1)
{
d=n/l,r=n/d;
ans+=1ll*d*d*(f[r]-f[l-1]);
}
Fast::print(ans),Fast::PutChar(' ');
}
Fast::Print();
return 0;
}
2018.12.19
【bzoj4804】欧拉心算 解题报告的更多相关文章
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- [BZOJ4804]欧拉心算
题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))\] 多组数据,\(n\le10^7\). sol SBT 单组数据\(O(\sqrt n ...
- BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)
题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...
- bzoj4804: 欧拉心算 欧拉筛
题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...
- 并不对劲的bzoj4804:欧拉心算
题目大意 \(t\)(\(t\leq5000\))组询问,每次询问给出\(n\)(\(n\leq10^7\)),求: \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(gcd(i, ...
- [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演
分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...
- 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛
[BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...
- BZOJ_4804_欧拉心算_欧拉函数
BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N&l ...
- bzoj 4804 欧拉心算 欧拉函数,莫比乌斯
欧拉心算 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 408 Solved: 244[Submit][Status][Discuss] Descr ...
随机推荐
- 关于Unity中OnGUI()的简单使用
有时候想要输出一些数据到屏幕上方便查看,新建一个UI对象又挺麻烦,用OnGUI()在屏幕上直接绘制UI比较方便. GUI.Label(, , , ), “aaa", style); 这条语句 ...
- OpenSSH技术详解
一.什么是Openssh OpenSSH 是 SSH (Secure SHell) 协议的免费开源实现.SSH协议族可以用来进行远程控制, 或在计算机之间传送文件.而实现此功能的传统方式,如teln ...
- vue 子组件传值给父组件
子组件通过this.$emit("event",[args,....]),传值给父组件 HTML部分: <div id="app"> <tmp ...
- export命令详解
基础命令学习目录首页 export 的基本作用就是将父shell中的局部变量设置为环境变量,使得该变量可以在子shell中使用.下面设置两种情景对export进行原理解析. 情景 1. 有一个名为m ...
- Daily Scrumming* 2015.11.2(Day 14)
一.今明两天任务表 Member Today’s Task Tomorrow’s Task 江昊 实现前后端整合 继续实现前后端整合 杨墨犁 修改好首页 开始实现社团页 付帅 测试api 继续测试并完 ...
- 2018-2019-20172329 《Java软件结构与数据结构》第九周学习总结
2018-2019-20172329 <Java软件结构与数据结构>第九周学习总结 教材学习内容总结 <Java软件结构与数据结构>第十五章-图 一.图及无向图 1.图的相关概 ...
- 20172308 实验三《Java面向对象程序设计 》实验报告
20172308 2017-2018-2 <程序设计与数据结构>实验三报告 课程:<程序设计与数据结构> 班级: 1723 姓名: 周亚杰 学号:20172308 实验教师:王 ...
- Task 6.2站立会议三
今天我完成了软件的主要聊天界面的视频通话和语音通话的部分功能,过程中遇到很多不会的知识.因为使用的是C#,虽然很容易上手但是还会存在很多不懂得内容.
- c# using的作用
using 关键字有两个主要用途: (一).作为指令,用于为命名空间创建别名或导入其他命名空间中定义的类型. (二).作为语句,用于定义一个范围,在此范围的末尾将释放对象. using指令 ...
- Mininet-wifi安装和简单使用
Mininet-WIFI安装和简单使用 安装 git clone https://github.com/intrig-unicamp/mininet-wifi cd mininet-wifi sudo ...