题目描述

求有多少种长度为 n 的序列 A,满足以下条件:

1 ~ n 这 n 个数在序列中各出现了一次

若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的

满足条件的序列可能很多,序列数对 109+7 取模。

输入输出格式

输入格式:

第一行一个数 T,表示有 T 组数据。

接下来 T 行,每行两个整数 n、m。

输出格式:

输出 T 行,每行一个数,表示求出的序列数

输入输出样例

输入样例#1:

5
1 0
1 1
5 2
100 50
10000 5000
输出样例#1:

0
1
20
578028887
60695423

说明

测试点 1 ~ 3: T=1000,n≤8,m≤8;

测试点 4 ~ 6: T=1000,n≤12,m≤12;

测试点 7 ~ 9: T=1000,n≤100,m≤100;

测试点 10 ~ 12:T=1000,n≤1000,m≤1000;

测试点 13 ~ 14:T=500000,n≤1000,m≤1000;

测试点 15 ~ 20:T=500000,n≤1000000,m≤1000000。

Solution:

  本题组合数学+错排公式+线推逆元。

  组合数学和逆元就不说了,介绍下错位排列。

  错位排列,顾名思义就是一个n元排列,每个元素不能排在自己的位置上的方案数,一般记作$D(n)$。

  通项公式:

    $$D_n=n!\times(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}…\frac{(-1)^n}{n!})$$

   证明:

   设$S$是由$1,2,…n$构成的所有全排列组成的集合,则$|S|=n!$。

   设$A_i$是在$1,2,…n$的所有排列种由第$i$个位置上的元素恰好是$i$的所有排列组成的集合,则有:$|A_i|=(n-1)!$。

   同理可得:$|A_i\cap A_j|=(n-2)!$

   ……

   一般情况下有:$|A_{i1}\cap A_{i2}\cap …\cap A_{ik}|=(n-k)!$。

   因为$D_n$是$S$中不满足性质$P_1,P_2,…,P_n$的元素个数,所以由容斥原理的:

   $D_n=|\overline A_1\cap \overline A_2 …\cap \overline A_n|$

     $=n!-C(n,1)*(n-1)!+C(n,2)*(n-2)!-…(-1)^nC(n,n)*0!$

     $=n!\times(1-\frac{1}{1!}+\frac{1}{2!}-…\frac{(-1)^n}{n!})$

  递推公式:

    $$D_n=(n-1)\times(D_{n-1}+D_{n-2})$$

   证明:

   第一步,把第$n$个元素放在一个位置,比如位置$k$,一共有$n-1$种方法;

   第二步,放编号为$k$的元素,这时有两种情况:(1)把它固定到位置$n$,由于第$n$个元素固定到了位置$k$,剩下$n-2$个元素就有$D_{n-2}$种方法;(2)第$k$个元素不能放到位置$n$,而第$n$个元素固定到了位置$k$,于是$n-1$个元素,有$D_{n-1}$种方法;

   综上得到$D_n = (n-1) \times(D_{n-2} + D_{n-1})$,特殊地,$D_1=0, D_2=1$。

  当然更为常用的是后面的递推公式,比如本题。

  不难发现本题答案为$C(n,m)\times D(n-m)$。

  于是我们只要预处理出$10^6$内的阶乘取模、阶乘的逆元、错排的方案数就好了。

代码:

/*Code by 520 -- 9.14*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const ll N=,mod=1e9+;
int n,m;
ll d[N],c[N],inv[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void Pre(){
d[]=,d[]=;
For(i,,) d[i]=(i-)*(d[i-]+d[i-])%mod;
c[]=,c[]=,inv[]=;
For(i,,) c[i]=c[i-]*i%mod,inv[i]=(mod-mod/i*inv[mod%i]%mod)%mod;
For(i,,) inv[i]=inv[i]*inv[i-]%mod;
} int main(){
Pre();
int T=gi();
while(T--) {
n=gi(),m=gi();
if(n-m==) printf("0\n");
else if(n==m) printf("1\n");
else if(!m) printf("%lld\n",d[n]);
else printf("%lld\n",c[n]*inv[m]%mod*inv[n-m]%mod*d[n-m]%mod);
}
return ;
}

P4071 [SDOI2016]排列计数的更多相关文章

  1. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  2. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  3. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  4. Luogu P4071 [SDOI2016]排列计数

    晚上XZTdalao给我推荐了这道数论题.太棒了又可以A一道省选题了 其实这道题也就考一个错排公式+组合数+乘法逆元 我们来一步一步分析 错排公式 通俗的说就是把n个1~n的数排成一个序列A,并使得所 ...

  5. 洛谷 P4071 [SDOI2016]排列计数

    洛谷 这是一道组合数学题. 对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\). 且要保证剩下的序列不稳定,即错排\(D_{n-m}\). 所以答案就是:\[ANS=C^{m}_ ...

  6. P4071 [SDOI2016]排列计数 题解

    分析: 线性求逆元:https://blog.csdn.net/qq_34564984/article/details/52292502 代码: #include<cstdio> usin ...

  7. 数学【洛谷P4071】 [SDOI2016]排列计数

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  8. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  9. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

随机推荐

  1. 六种流行的语言大餐---C、C++、python、Java、php、C#你更喜欢哪一个呢?

    引言 鉴于五一期间超大的人流量,LZ思来想去,最终还是选择蜗居在自己的出租屋.无聊之际,当然不能忘了做点什么事情,于是LZ就研究了一下几种语言的皮毛,在这里献丑一翻,希望各位猿友莫要见笑. 不过说来也 ...

  2. YouTube视频下载方法汇总

    YouTube是一个视频共享网站,YouTuber们自己拍摄并制作视频,上传到YouTube,然后用户观看.分享并评论这些内容.虽然在线观看很方便,但是有些时候你却只能处于离线的状态,比如出差.旅游. ...

  3. 180815-Spring之RestTemplate中级使用篇

    Spring之RestTemplate中级使用篇 前面一篇介绍了如何使用RestTemplate发起post和get请求,然而也只能满足一些基本的场景,对于一些特殊的如需要设置请求头,添加认证信息等场 ...

  4. 使用云负载时将http的请求转发至https时报错:“ERR_TOO_MANY_REDIRECTS”!

    问题描述: 新业务正式环境部署,使用云负载(有http监听也有https监听)在我向我的 Web 服务器添加重定向逻辑后,我的网站停止工作,并且我收到错误 ERR_TOO_MANY_REDIRECTS ...

  5. 如何在忘记mysql的登录密码时更改mysql登录的密码(window及linux)

    最近一直在边学习边开发java项目,理所当然的就少不了跟数据库打交道了,但是有时候就会脑子一短路,把mysql的登录密码给忘记了,这个时候我们又很急切的需要进到数据库中查看数据,那这个时候要怎么才能改 ...

  6. git push失败

    不知道弄错了什么上传项目到github上失败 git commit的时候提示 On branch masternothing to commit, working tree clean git pus ...

  7. 微服务构建: Spring Boot

    在展开 Spring Cloud 的微服务架构部署之前, 我们先了解一下用于构建微服务的基础框架-Spring Boot. 由于 Spring Cloud 的构建基于 Spring Boot 实现, ...

  8. Docker--删除容器实例和镜像

    一.删除容器实例 使用命令docker rm 容器ID或者容器名 1.docker ps -a查询已有的实例 [root@cxt data]# docker ps -a 2.docker rm 容器I ...

  9. hadoop组件概念理解

    一.HADOOP 二.HIVE 三.SQOOP 1.来由和作用 sqoop由一些封装好的MR程序的jar包构成,后演变成框架,但sqoop只有map任务没有reduce任务. 用于 hdfs.hive ...

  10. Scrum Meeting 10.26

    1.会议内容 姓名 今日任务 明日任务 预估时间(h) 徐越 学习服务器配置 配置SQLserver 4 卞忠昊 阅读代码 找上届代码的bug 3 武鑫 查阅资料 查阅资料,各种app的界面设计 3 ...