在动态规划的题型中,一般叫什么DP就是怎么DP,状压DP也不例外

所谓状态压缩,一般是通过用01串表示状态,充分利用二进制数的特性,简化计算难度。举个例子,在棋盘上摆放棋子的题目中,我们可以用1表示当前位置摆放棋子,用0表示当前位置不摆放棋子。

这样的话,就能够直接运用许多二进制运算的特性来实现对时间和空间的优化

例如:如果给你一个\(n*m\)的棋盘,让你放棋子,但是棋子两两不能相邻,求方案数

我们仅考虑暴力枚举每一行的情况,如果是普通用数组来存储,判断的时候对于相邻两行需要一个数一个数的看,不论是时间还是空间,都很难让人接受

但是如果用一个二进制数来存储每一行的情况,对于相邻两行,我们只需要进行一下与运算,如果有值,就说明不合法,这样不论是时间还是空间上,都进行了极大的优化

当然,这并不是说状压DP就是暴力枚举,这里只是举个例子来解释一下状压DP中的状态压缩这个过程

看完上面这些,还是不知道这是个什么东西,所以我们结合一道题目来演示一下,什么是状压DP

互不侵犯

这是一道非常经典的状压例题,题意过于简单,我们不再赘述

我们首先考虑一下国王的特性:能够攻击到八个方向的棋子。也就是说,如果某个位置放置了棋子,它的九宫格内就不能再放置了。

我们可以将问题拆解,把九宫格看为三行,就可以分开考虑了

首先我们先考虑在当前行的棋子,只要一个棋子的左右没有相邻的棋子,那么就不冲突

再考虑上面那一行,只要一个棋子正上即左右侧上没有棋子则合法

最后再考虑一下下面那一行是否满足条件

那么我们只要枚举所有情况,再判断就可以了

显然,这样做复杂度实在太高了,9*9的棋盘计算到人类灭亡连枚举都枚举不完

看来我们需要把算法优化一下

我们考虑可不可以逐行枚举,先对每行的状态进行判断,在对上面一行和下面一行进行判断。我们会发现这样的做法是可行的,而且判断下一行是没有意义的,因为我们是逐行枚举,下一行还没枚举到有什么好枚举的。那么我们又会发现,这不是递推嘛。可是这样还是有点慢,怎么优化呢?

下面就是状压时刻了

我们可以在一开始将所有行内可行状态存储下来,由于可行状态远远小于总的状态数,这样可以大大优化我们的复杂度。如何判断这种状态是否没有冲突呢?用与运算就可以轻松判断。我们先预处理好第一行的情况,然后递推即可。

下面来看一下代码吧(内附详解)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define ll long long
#define gc getchar
#define maxn 10
#define maxm 105 //由于可行状态占比极小,所以行内的可行状态不到100
using namespace std; inline ll read(){
ll a=0;int f=0;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
} int get(int x){ //求当前状态中1的数量
int sum=0;
while(x){
++sum;
x&=x-1; //初赛考了,你做对了吗
}
return sum;
} int n,m,N,tot,s[maxm],w[maxm]; //s[i]表示第i种可行状态的具体摆放,w[i]表示第i种状态棋子的个数
ll ans,f[maxn][maxm][maxm]; //ans最终用来统计答案,f[i][j][l]表示第i行状态为第j种摆放l个棋子的方案数
int main(){
n=read();m=read();N=1<<n;
for(int i=0;i<N;++i){
if(i&i<<1)continue; //如果非零说明有相邻棋子,则不合法
s[++tot]=i;
w[tot]=get(i);
f[1][tot][w[tot]]=1; //第一行需要单独初始化
}
for(int i=2;i<=n;++i)
for(int j=1;j<=tot;++j)
for(int k=1;k<=tot;++k){
if(s[j]&s[k])continue; //三种与上一行有冲突的情况
if(s[j]&s[k]<<1)continue;
if(s[k]&s[j]<<1)continue;
for(int l=w[j];l<=m;++l) //这里非常重要!!l的取值影响到f数组的意义,l如果是从w[j]开始,那么f数组表示的是这一行及以前所有放l个棋子的方案数;如果l从w[j]+1开始,那么f数组表示的是到这一行正好有l个棋子的方案数,以前够了l个棋子的方案则没有被记录在这里面。这会影响到最后统计答案的,并且样例太水并不能看出来。这里一定要注意!!!
f[i][j][l]+=f[i-1][k][l-w[j]];
}
for(int i=1;i<=tot;++i) //统计答案就很简单了。不过如果是l是另一种写法还需要枚举1~n
ans+=f[n][i][m];
printf("%lld",ans);
return 0;
}

这就是状压DP,你是否理解了呢?不妨自己打一遍代码,能够加深理解哦。

例题

中国象棋

玉米田

染色(一道我认为可用四进制状压解决的题目,如果有神仙成功了,希望能够告诉我一声,以证明我没口胡错)

山贼集团

茫茫人海相遇也算缘分,点个推荐好不好\(QwQ\)

状压DP入门详解+题目推荐的更多相关文章

  1. 树形DP入门详解+题目推荐

    树形DP.这是个什么东西?为什么叫这个名字?跟其他DP有什么区别? 相信很多初学者在刚刚接触一种新思想的时候都会有这种问题. 没错,树形DP准确的说是一种DP的思想,将DP建立在树状结构的基础上. 既 ...

  2. 数位DP入门详解+题目推荐

    \(update:2019-9-6\) 博客里某些东西没有解释清楚,完善了对应的解释 在开始之前,我们先来看一道题--题目链接 题目要求,相邻两位的差大于等于2,那么我们先来构造一个试一试. 比如说\ ...

  3. poj3254状压DP入门

    G - 状压dp Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:65536KB     64bit ...

  4. 状压dp入门

    状压dp的含义 在我们解决动态规划题目的时候,dp数组最重要的一维就是保存状态信息,但是有些题目它的具有dp的特性,并且状态较多,如果直接保存的可能需要三维甚至多维数组,这样在题目允许的内存下势必是开 ...

  5. poj2686 状压dp入门

    状压dp第一题:很多东西没看懂,慢慢来,状压dp主要运用了位运算,二进制处理 集合{0,1,2,3,....,n-1}的子集可以用下面的方法编码成整数 像这样,一些集合运算就可以用如下的方法来操作: ...

  6. POJ:1185-炮兵阵地(状压dp入门)

    炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组 ...

  7. POJ 3254 & POJ 1185(状压DP入门)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16773   Accepted: 8860 Desc ...

  8. poj 3254 状压dp入门题

    1.poj 3254  Corn Fields    状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...

  9. 状压dp入门第一题 poj3254

    题目链接 http://poj.org/problem?id=3254 转自http://blog.csdn.net/harrypoirot/article/details/23163485 #inc ...

随机推荐

  1. CSS3新增特性详解(二)

    上篇博文主要介绍了CSS3新增特性中的静态特性,比如新的选择器.多背景图.阴影.渐变等.本文主要介绍CSS3中新增的动态特性,如过度.动画.变形等. transitian:  -webkit-tran ...

  2. 开始认真的学习Python

    虽然以前有多年的Fortran.C.C++以及Java开发经验,但真的开始熟悉Python还是被惊艳到了,太舒服了,看起来有如沐春风的感觉,简洁和优美,这个才是代码艺术.

  3. Hyperledger Fabric CA User’s Guide——开始(三)

    Fabric CA User’s Guide——开始 先决条件 安装Go 1.9+ 设置正确的GOPATH环境变量 安装了libtool和libtdhl-dev包 下面是在Ubuntu上安装libto ...

  4. 关于Python的面试题

    Python语言特性 1 Python的函数参数传递 看两个例子: a = 1 def fun(a): a = 2 fun(a) print a # 1 a = [] def fun(a): a.ap ...

  5. Spring Bean注册解析(二)

           在上文Spring Bean注册解析(一)中,我们讲解了Spring在注册Bean之前进行了哪些前期工作,以及Spring是如何存储注册的Bean的,并且详细介绍了Spring是如何解析 ...

  6. java_web连接SQL_server详细步骤

    (1).我用的是Myeclipse,可以直接将sqljdbc4.jar拷到项目文件 (2).点开SQL Server配置管理器 选中SQL Server2008网络配置下的SQLEXPRESS的协议, ...

  7. 重温servlet①

    Servlet是单例的,是线程不安全的.比较灵活,但是容易会使两个线程产生错误 类由我们自己来写,对象由服务器生成,方法由服务器自己调用.   一个servletconfig对象对应着一段web.xm ...

  8. fcn模型训练及测试

    1.模型下载 1)下载新版caffe: https://github.com/BVLC/caffe 2)下载fcn代码: https://github.com/shelhamer/fcn.berkel ...

  9. Oracle 11g R2 for Win7旗舰版(64位)- 安装

    1.下载Oracle 11g R2 for Windows的版本                                   下载地址:http://www.oracle.com/techne ...

  10. 推荐一个Markdown数学公式编辑器——Haroopad & Mathjax

    要在Markdown里插入数学公式,如果没有好用的的引擎or编辑器,那么只能插入图片了,十分麻烦.这里推荐一个十分强大的数学公式引擎--Mathjax. 配置 有道云笔记目前不支持浏览MathJax公 ...