【Codeforces528D】Fuzzy Search FFT
D. Fuzzy Search
Leonid works for a small and promising start-up that works on decoding the human genome. His duties include solving complex problems of finding certain patterns in long strings consisting of letters 'A', 'T', 'G' and 'C'.
Let's consider the following scenario. There is a fragment of a human DNA chain, recorded as a string S. To analyze the fragment, you need to find all occurrences of string T in a string S. However, the matter is complicated by the fact that the original chain fragment could contain minor mutations, which, however, complicate the task of finding a fragment. Leonid proposed the following approach to solve this problem.
Let's write down integer k ≥ 0 — the error threshold. We will say that string T occurs in string S on position i (1 ≤ i ≤ |S| - |T| + 1), if after putting string T along with this position, each character of string T corresponds to the some character of the same value in string S at the distance of at most k. More formally, for any j (1 ≤ j ≤ |T|) there must exist such p (1 ≤ p ≤ |S|), that |(i + j - 1) - p| ≤ k and S[p] = T[j].
For example, corresponding to the given definition, string "ACAT" occurs in string "AGCAATTCAT" in positions 2, 3 and 6.

Note that at k = 0 the given definition transforms to a simple definition of the occurrence of a string in a string.
Help Leonid by calculating in how many positions the given string T occurs in the given string S with the given error threshold.
Input
The first line contains three integers |S|, |T|, k (1 ≤ |T| ≤ |S| ≤ 200 000, 0 ≤ k ≤ 200 000) — the lengths of strings S and T and the error threshold.
The second line contains string S.
The third line contains string T.
Both strings consist only of uppercase letters 'A', 'T', 'G' and 'C'.
Output
Print a single number — the number of occurrences of T in S with the error threshold k by the given definition.
Examples
10 4 1
AGCAATTCAT
ACAT
output
3
Note
If you happen to know about the structure of the human genome a little more than the author of the problem, and you are not impressed with Leonid's original approach, do not take everything described above seriously.
Solution
题目大意:给出A,B串,求B串在A串中出现的次数.这里的A串有奇怪的性质,对于一个位置$i$,只要$[i-k,i+k]$中存在合法匹配B中一个字符,则可以认为$i$位置匹配。字符集大小AGCT
毛啸论文里的例题,FFT的简单应用。 详细的看论文吧..
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
#define MAXN 800010
#define Pai acos(-1.0)
map<char,int>id;
char a[MAXN],b[MAXN];
int ok[MAXN][5],cnt[5],N,M,K,ans[MAXN],len;
struct Complex{
double r,i;
Complex (double R=0.0,double I=0.0) {r=R,i=I;}
Complex operator + (const Complex & A) const {return Complex(r+A.r,i+A.i);}
Complex operator - (const Complex & A) const {return Complex(r-A.r,i-A.i);}
Complex operator * (const Complex & A) const {return Complex(r*A.r-i*A.i,r*A.i+i*A.r);}
};
Complex A[MAXN],B[MAXN],C[MAXN];
inline void Prework(int j)
{
len=1;
while (len<(N<<1)) len<<=1;
for (int i=0; i<N; i++) A[i]=Complex(ok[i+1][j],0);
for (int i=N; i<len; i++) A[i]=Complex(0,0);
// for (int i=0; i<len; i++) printf("%d ",(int)(A[i].r+0.5)); puts("");
for (int i=0; i<M; i++) B[i]=Complex(id[b[M-i]]==j,0);
for (int i=M; i<len; i++) B[i]=Complex(0,0);
// for (int i=0; i<len; i++) printf("%d ",(int)(B[i].r+0.5)); puts("");
}
inline void Rader(Complex *x)
{
for (int i=1,j=len>>1,k; i<len-1; i++)
{
if (i<j) swap(x[i],x[j]);
k=len>>1;
while (j>=k) j-=k,k>>=1;
if (j<k) j+=k;
}
}
inline void DFT(Complex *x,int opt)
{
Rader(x);
for (int h=2; h<=len; h<<=1)
{
Complex Wn( cos(opt*2*Pai/h) , sin(opt*2*Pai/h) );
for (int i=0; i<len; i+=h)
{
Complex W(1,0);
for (int j=i; j<i+h/2; j++)
{
Complex u=x[j],t=x[j+h/2]*W;
x[j]=u+t; x[j+h/2]=u-t;
W=W*Wn;
}
}
}
if (opt==-1)
for (int i=0; i<len; i++) x[i].r/=len;
}
inline void FFT(Complex *A,Complex *B,Complex *C)
{
DFT(A,1); DFT(B,1);
for (int i=0; i<len; i++) C[i]=A[i]*B[i];
DFT(C,-1);
for (int i=0; i<len; i++) ans[i]+=(int)(C[i].r+0.5);
}
int main()
{
id['A']=1,id['G']=2,id['C']=3,id['T']=4;
scanf("%d%d%d%s%s",&N,&M,&K,a+1,b+1);
int l=0,r=0;
for (int i=1; i<=N; i++)
{
while (l<N && l<i-K) cnt[id[a[l++]]]--;
while (r<N && r<i+K) cnt[id[a[++r]]]++;
for (int j=1; j<=4; j++) if (cnt[j]) ok[i][j]=1;
}
// for (int i=1; i<=N; i++) printf("%d %d %d %d\n",ok[i][1],ok[i][2],ok[i][3],ok[i][4]);
for (int j=1; j<=4; j++) Prework(j),FFT(A,B,C);
int Ans=0;
for (int i=0; i<len; i++) if (ans[i]==M) Ans++;
printf("%d\n",Ans);
return 0;
}
【Codeforces528D】Fuzzy Search FFT的更多相关文章
- 【CF528D】Fuzzy Search(FFT)
[CF528D]Fuzzy Search(FFT) 题面 给定两个只含有\(A,T,G,C\)的\(DNA\)序列 定义一个字符\(c\)可以被匹配为:它对齐的字符,在距离\(K\)以内,存在一个字符 ...
- 【CF528D】Fuzzy Search
Problem Description 你有一个长度为 \(n\) 的串 \(S\),以及长度为 \(m\) 的串 \(T\). 现给定一个数 \(k\) ,我们说 \(T\) 在 \(S\) 的位置 ...
- 【HDU2222】Keywords Search AC自动机
[HDU2222]Keywords Search Problem Description In the modern time, Search engine came into the life of ...
- 【BZOJ3160】万径人踪灭(FFT,Manacher)
[BZOJ3160]万径人踪灭(FFT,Manacher) 题面 BZOJ 题解 很容易想到就是满足条件的子序列个数减去回文子串的个数吧... 至于满足条件的子序列 我们可以依次枚举对称轴 如果知道关 ...
- 【BZOJ3527】力(FFT)
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...
- 【BZOJ4827】【HNOI2017】礼物(FFT)
[BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每 ...
- 【计算机视觉】Selective Search for Object Recognition论文阅读3
Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong 在前 ...
- 【Matlab】快速傅里叶变换/ FFT/ fftshift/ fftshift(fft(fftshift(s)))
[自我理解] fft:可以指定点数的快速傅里叶变换 fftshift:将零频点移到频谱的中间 用法: Y=fftshift(X) Y=fftshift(X,dim) 描述:fftshift移动零频点到 ...
- 【HDU2222】Keywords Search(AC自动机)
Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...
随机推荐
- 【CTF WEB】GCTF-2017读文件
读文件 只给了个1.txt可以读,试了一下加*不行,感觉不是命令执行,"../"返回上级目录也不行,猜测可能过滤了什么,在1.txt中间加上"./"发现仍能读取 ...
- Centos 软连接和硬链接
1.软链接: 建立软链接:ln -s /usr/local/node-v4.2.6-linux-x86/bin/node /usr/local/bin/node 解释:将/usr/local/node ...
- ipad webapp禁止长按选择
1.禁止长按屏幕弹出对话框并选中文字 /*禁止长按选择文字事件*/ * { -webkit-touch-callout: none; -webkit-user-select: none; -khtml ...
- java基础31 List集合下的Vector集合
单例集合体系: ---------| collection 单例集合的根接口--------------| List 如果实现了list接口的集合类,具备的特点:有序,可重复 注:集合 ...
- CVE-2010-0248
[CNNVD]Microsoft Internet Explorer 多个远程代码执行漏洞(CNNVD-201001-237) Microsoft Internet Explorer 6, 6 SP1 ...
- post提交数据的四种编码方式
这里总结下post提交数据的四种方式. 参考文章: https://www.jianshu.com/p/3c3157669b64
- php安装amqp扩展
1.要安装AMQP PHP扩展,必须先安装librabbitmq库 1.1使用以下步骤下载并安装库: # 下载 git clone git://github.com/alanxz/rabbitmq-c ...
- day9作业
题目:简单主机批量管理工具 需求: 1.主机分组: 2.登录后显示主机分组,选择分组后查看主机列表: 3.可批量执行命令.发送文件,结果实时返回: 4.主机用户名密码可以不同.
- day7 面向对象class()学习
面向过程 VS 面向对象 编程范式 编程是程序员用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程,一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓 ...
- Linux学习笔记——基于鸟哥的Linux私房菜
Linux学习笔记--基于鸟哥的Linux私房菜 ***** ARM与嵌入式linux的入门建议 (1) 学习基本的裸机编程:ARM7或ARM9,理解硬件架构和控制原理 (这一步是绝对的根基) (2) ...