D. Fuzzy Search

time limit per test:3 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

Leonid works for a small and promising start-up that works on decoding the human genome. His duties include solving complex problems of finding certain patterns in long strings consisting of letters 'A', 'T', 'G' and 'C'.

Let's consider the following scenario. There is a fragment of a human DNA chain, recorded as a string S. To analyze the fragment, you need to find all occurrences of string T in a string S. However, the matter is complicated by the fact that the original chain fragment could contain minor mutations, which, however, complicate the task of finding a fragment. Leonid proposed the following approach to solve this problem.

Let's write down integer k ≥ 0 — the error threshold. We will say that string T occurs in string S on position i (1 ≤ i ≤ |S| - |T| + 1), if after putting string T along with this position, each character of string T corresponds to the some character of the same value in string S at the distance of at most k. More formally, for any j (1 ≤ j ≤ |T|) there must exist such p (1 ≤ p ≤ |S|), that |(i + j - 1) - p| ≤ k and S[p] = T[j].

For example, corresponding to the given definition, string "ACAT" occurs in string "AGCAATTCAT" in positions 2, 3 and 6.

Note that at k = 0 the given definition transforms to a simple definition of the occurrence of a string in a string.

Help Leonid by calculating in how many positions the given string T occurs in the given string S with the given error threshold.

Input

The first line contains three integers |S|, |T|, k (1 ≤ |T| ≤ |S| ≤ 200 000, 0 ≤ k ≤ 200 000) — the lengths of strings S and T and the error threshold.

The second line contains string S.

The third line contains string T.

Both strings consist only of uppercase letters 'A', 'T', 'G' and 'C'.

Output

Print a single number — the number of occurrences of T in S with the error threshold k by the given definition.

Examples

input
10 4 1
AGCAATTCAT
ACAT

output

3

Note

If you happen to know about the structure of the human genome a little more than the author of the problem, and you are not impressed with Leonid's original approach, do not take everything described above seriously.

Solution

题目大意:给出A,B串,求B串在A串中出现的次数.这里的A串有奇怪的性质,对于一个位置$i$,只要$[i-k,i+k]$中存在合法匹配B中一个字符,则可以认为$i$位置匹配。字符集大小AGCT

毛啸论文里的例题,FFT的简单应用。 详细的看论文吧..

Code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
#define MAXN 800010
#define Pai acos(-1.0)
map<char,int>id;
char a[MAXN],b[MAXN];
int ok[MAXN][5],cnt[5],N,M,K,ans[MAXN],len;
struct Complex{
double r,i;
Complex (double R=0.0,double I=0.0) {r=R,i=I;}
Complex operator + (const Complex & A) const {return Complex(r+A.r,i+A.i);}
Complex operator - (const Complex & A) const {return Complex(r-A.r,i-A.i);}
Complex operator * (const Complex & A) const {return Complex(r*A.r-i*A.i,r*A.i+i*A.r);}
};
Complex A[MAXN],B[MAXN],C[MAXN];
inline void Prework(int j)
{
len=1;
while (len<(N<<1)) len<<=1;
for (int i=0; i<N; i++) A[i]=Complex(ok[i+1][j],0);
for (int i=N; i<len; i++) A[i]=Complex(0,0);
// for (int i=0; i<len; i++) printf("%d ",(int)(A[i].r+0.5)); puts("");
for (int i=0; i<M; i++) B[i]=Complex(id[b[M-i]]==j,0);
for (int i=M; i<len; i++) B[i]=Complex(0,0);
// for (int i=0; i<len; i++) printf("%d ",(int)(B[i].r+0.5)); puts("");
}
inline void Rader(Complex *x)
{
for (int i=1,j=len>>1,k; i<len-1; i++)
{
if (i<j) swap(x[i],x[j]);
k=len>>1;
while (j>=k) j-=k,k>>=1;
if (j<k) j+=k;
}
}
inline void DFT(Complex *x,int opt)
{
Rader(x);
for (int h=2; h<=len; h<<=1)
{
Complex Wn( cos(opt*2*Pai/h) , sin(opt*2*Pai/h) );
for (int i=0; i<len; i+=h)
{
Complex W(1,0);
for (int j=i; j<i+h/2; j++)
{
Complex u=x[j],t=x[j+h/2]*W;
x[j]=u+t; x[j+h/2]=u-t;
W=W*Wn;
}
}
}
if (opt==-1)
for (int i=0; i<len; i++) x[i].r/=len;
}
inline void FFT(Complex *A,Complex *B,Complex *C)
{
DFT(A,1); DFT(B,1);
for (int i=0; i<len; i++) C[i]=A[i]*B[i];
DFT(C,-1);
for (int i=0; i<len; i++) ans[i]+=(int)(C[i].r+0.5);
}
int main()
{
id['A']=1,id['G']=2,id['C']=3,id['T']=4;
scanf("%d%d%d%s%s",&N,&M,&K,a+1,b+1);
int l=0,r=0;
for (int i=1; i<=N; i++)
{
while (l<N && l<i-K) cnt[id[a[l++]]]--;
while (r<N && r<i+K) cnt[id[a[++r]]]++;
for (int j=1; j<=4; j++) if (cnt[j]) ok[i][j]=1;
}
// for (int i=1; i<=N; i++) printf("%d %d %d %d\n",ok[i][1],ok[i][2],ok[i][3],ok[i][4]);
for (int j=1; j<=4; j++) Prework(j),FFT(A,B,C);
int Ans=0;
for (int i=0; i<len; i++) if (ans[i]==M) Ans++;
printf("%d\n",Ans);
return 0;
}

  

【Codeforces528D】Fuzzy Search FFT的更多相关文章

  1. 【CF528D】Fuzzy Search(FFT)

    [CF528D]Fuzzy Search(FFT) 题面 给定两个只含有\(A,T,G,C\)的\(DNA\)序列 定义一个字符\(c\)可以被匹配为:它对齐的字符,在距离\(K\)以内,存在一个字符 ...

  2. 【CF528D】Fuzzy Search

    Problem Description 你有一个长度为 \(n\) 的串 \(S\),以及长度为 \(m\) 的串 \(T\). 现给定一个数 \(k\) ,我们说 \(T\) 在 \(S\) 的位置 ...

  3. 【HDU2222】Keywords Search AC自动机

    [HDU2222]Keywords Search Problem Description In the modern time, Search engine came into the life of ...

  4. 【BZOJ3160】万径人踪灭(FFT,Manacher)

    [BZOJ3160]万径人踪灭(FFT,Manacher) 题面 BZOJ 题解 很容易想到就是满足条件的子序列个数减去回文子串的个数吧... 至于满足条件的子序列 我们可以依次枚举对称轴 如果知道关 ...

  5. 【BZOJ3527】力(FFT)

    [BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...

  6. 【BZOJ4827】【HNOI2017】礼物(FFT)

    [BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每 ...

  7. 【计算机视觉】Selective Search for Object Recognition论文阅读3

    Selective Search for Object Recoginition surgewong@gmail.com http://blog.csdn.net/surgewong       在前 ...

  8. 【Matlab】快速傅里叶变换/ FFT/ fftshift/ fftshift(fft(fftshift(s)))

    [自我理解] fft:可以指定点数的快速傅里叶变换 fftshift:将零频点移到频谱的中间 用法: Y=fftshift(X) Y=fftshift(X,dim) 描述:fftshift移动零频点到 ...

  9. 【HDU2222】Keywords Search(AC自动机)

    Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...

随机推荐

  1. Linux内核Ramdisk(initrd)机制【转】

    转自:http://www.cnblogs.com/armlinux/archive/2011/03/30/2396827.html 摘要:对于Linux用户来说,Ramdisk并不陌生,可是为什么需 ...

  2. python字典解析

    import json # coding: utf-8 from functools import singledispatch from collections import abc import ...

  3. C# Guid 16位 唯一

    public static class GuidExtentions { /// <summary> /// 根据GUID获取16位的唯一字符串 /// </summary> ...

  4. DOS命令基础,包涵DOS库说明书

    20种常用的DOS命令小结 作者: 字体:[增加 减小] 类型:转载   DOS命令总共大约有一百个(包括文本编辑.查杀病毒.配置文件.批处理等),我们这里详细介绍二十个常用的DOS命令     先介 ...

  5. linux 安装 Elasticsearch6.4.0详细步骤以及问题解决方案

    1.jdk 安装 参考资料:https://www.cnblogs.com/shihaiming/p/5809553.html 2.elasticsearch 安装 下载:https://artifa ...

  6. Python基础 - Ubuntu+Nginx+uwsgi+supervisor部署Flask应用

    网上找了许多讲关于Flask应用部署的文章几乎都是一个helloworld的Demo,按照helloworld来部署都没问题,但实际项目部署时还是遇到了不少问题.在这里简单写下自己成功部署的过程,防止 ...

  7. kickstart配置LINUX无人值守选项--rootpw

    linux kickstart rootpw密码可以使用明文,也可以使用加密过的值(密码为:IPPBXADMINROOT) 注意:在这里要使用加密过的值,否则安全性就太低了 rootpw --iscr ...

  8. LeetCode664. Strange Printer

    There is a strange printer with the following two special requirements: The printer can only print a ...

  9. python_docx制作word文档

    一.docx模块 Python可以利用python-docx模块处理word文档,处理方式是面向对象的.也就是说python-docx模块会把word文档,文档中的段落.文本.字体等都看做对象,对对象 ...

  10. RelativeLayout

    <?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:android=&q ...