bzoj5102 [POI2018]Prawnicy 线段树

$bzoj$跑的太慢了......
我们考虑用线段树来解决这个问题
考虑扫描线
当扫到左端点$i$时,我们把线段$i$加入线段树
同时,对于每个左端点$i$,我们在线段树上二分出最远的$r$满足$r$被覆盖了$k$次以上
复杂度$O(n \log n)$
然后$TLE$了,这一定不是我的锅...
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = ; char c = gc();
while(c > '' || c < '') c = gc();
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p;
} int wr[], rw;
#define pc(iw) putchar(iw)
inline void write(int x, char c = '\n') {
if(!x) pc('');
if(x < ) x = -x, pc('-');
while(x) wr[++ rw] = x % , x /= ;
while(rw) pc(wr[rw --] + ''); pc(c);
} const int sid = ;
const int tid = ; int nl, nr, ans;
int n, k, tn, tot;
int T[sid], mx[tid], tag[tid];
struct seg {
int l, r, id;
friend bool operator < (seg a, seg b)
{ return a.l < b.l; }
} t[]; #define ls (o << 1)
#define rs (o << 1 | 1) inline void pushdown(int o) {
if(!tag[o]) return;
tag[ls] += tag[o]; mx[ls] += tag[o];
tag[rs] += tag[o]; mx[rs] += tag[o];
tag[o] = ;
} int ml, mr;
inline void mdf(int o, int l, int r) {
if(ml <= l && mr >= r) { tag[o] ++; mx[o] ++; return; }
pushdown(o);
int mid = (l + r) >> ;
if(ml > mid) mdf(rs, mid + , r);
else if(mr <= mid) mdf(ls, l, mid);
else mdf(ls, l, mid), mdf(rs, mid + , r);
mx[o] = max(mx[ls], mx[rs]);
} inline int qry(int o, int l, int r) {
if(l == r) {
if(mx[o] >= k) return l;
return ;
}
pushdown(o);
int mid = (l + r) >> ;
if(mx[rs] < k && mx[ls] < k) return ;
if(mx[rs] >= k) return qry(rs, mid + , r);
else return qry(ls, l, mid);
} int b[sid], f[];
inline void radix_sort(int *a, int n) {
rep(i, , n) ++ f[a[i] & ];
rep(i, , ) f[i] += f[i - ];
drep(i, n, ) b[f[a[i] & ] --] = a[i];
memset(f, , sizeof(f));
rep(i, , n) ++ f[b[i] >> ];
rep(i, , ) f[i] += f[i - ];
drep(i, n, ) a[f[b[i] >> ] --] = b[i];
} int main() {
n = read(); k = read();
rep(i, , n) {
t[i].id = i;
t[i].l = read(); t[i].r = read();
T[++ tot] = t[i].l; T[++ tot] = t[i].r;
}
sort(t + , t + n + );
radix_sort(T, tot);
tn = unique(T + , T + tot + ) - T - ; rep(i, , n)
t[i].r = lower_bound(T + , T + tn + , t[i].r) - T; for(ri i = , j = ; i <= tn; i ++) {
while(j <= n && t[j].l == T[i]) {
ml = i; mr = t[j].r;
mdf(, , tn); j ++;
}
int far = qry(, , tn);
if(T[far] - T[i] > ans) {
nl = i; nr = far;
ans = T[far] - T[i];
}
} write(ans);
int num = ;
rep(i, , n) {
if(t[i].l <= T[nl] && nr <= t[i].r)
num ++, write(t[i].id, ' ');
if(num == k) break;
}
return ;
}
bzoj5102 [POI2018]Prawnicy 线段树的更多相关文章
- BZOJ5102:[POI2018]Prawnicy(贪心,堆)
Description 定义一个区间(l,r)的长度为r-l,空区间的长度为0. 给定数轴上n个区间,请选择其中恰好k个区间,使得交集的长度最大. Input 第一行包含两个正整数n,k(1<= ...
- bzoj5102: [POI2018]Prawnicy
Description 定义一个区间(l,r)的长度为r-l,空区间的长度为0. 给定数轴上n个区间,请选择其中恰好k个区间,使得交集的长度最大. Input 第一行包含两个正整数n,k(1<= ...
- 【BZOJ5102】[POI2018]Prawnicy 堆
[BZOJ5102][POI2018]Prawnicy Description 定义一个区间(l,r)的长度为r-l,空区间的长度为0. 给定数轴上n个区间,请选择其中恰好k个区间,使得交集的长度最大 ...
- bzoj3932--可持久化线段树
题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
- codevs 1080 线段树点修改
先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...
- codevs 1082 线段树区间求和
codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...
- PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树
#44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...
随机推荐
- 工具推荐:ATSCAN,功能强大的Perl脚本扫描器
工具推荐:ATSCAN,功能强大的Perl脚本扫描器 使用perl语言编写的开源的扫描器,功能丰富强大,除了基本的tcp和udp端口扫描之外,还可以搜索wordpress.joomla等网站并进行口令 ...
- 一个diff工具,用于判断两个目录下所有的改动(比较新旧版本文件夹)
需求: 编写一个diff工具,用于判断两个目录下所有的改动 详细介绍: 有A和B两个目录,目录所在位置及层级均不确定 需要以B为基准找出两个目录中所有有改动的文件(文件或内容增加.修改.删除),将有改 ...
- 如何基于Spring Boot搭建一个完整的项目
前言 使用Spring Boot做后台项目开发也快半年了,由于之前有过基于Spring开发的项目经验,相比之下觉得Spring Boot就是天堂,开箱即用来形容是绝不为过的.在没有接触Spring B ...
- Linux下配置镜像源
清华大学地址: https://mirrors.tuna.tsinghua.edu.cn 选择对应ubuntu的版本 在linux下用终端敲 cd /etc/apt/source.list 把里面的内 ...
- 19 Error handling and Go go语言错误处理
Error handling and Go go语言错误处理 12 July 2011 Introduction If you have written any Go code you have pr ...
- Python 内置装饰器
内置的装饰器 内置的装饰器和普通的装饰器原理是一样的,只不过返回的不是函数,而是类对象,所以更难理解一些. @property 在了解这个装饰器前,你需要知道在不使用装饰器怎么写一个属性. d ...
- Github中展示demo
原文链接http://www.jianshu.com/p/75e30889e70a 第一步:找到Settings,点击 第二步:找到githubPages点击none,切换到master branch ...
- Java学习(异常类)
一.什么是异常: 异常就是在运行时产生的问题.通常用Exception描述. 在java中,把异常封装成了一个类,当出现问题时,就会创建异常类对象并抛出异常相关的信息(如详细信息,名称以及异常所处的位 ...
- 非ROOT用户不能识别声卡问题
将非ROOT用户加入到audio组中即可 sudo usermod -a -G audio usrname
- O(n log log n)实现FGT和FLT(Fast GCD/LCM Transformation)
本文是作者看不懂分治FFT之后开始娱乐一下自己写的 看到一道题时候询问了正解后,推出了一个奇怪的变换,发现这个很Transformation,我和正解推出来的奇怪的东西是一样的,但还是想写一下思路.. ...