CodeForces 1070J Streets and Avenues in Berhattan 性质+动态规划
题目大意:
你有$k$个数,分为$26$种
对于每个数,你可以选择选进$A$集合或者$B$集合或者不选
要求$A$集合中必须有$n$个数,$B$集合中必须有$m$个数
记第$i$种数在$A$集合中的个数为$a_i$,$B$中个数为$b_i$
试最小代价$\sum a_i * b_i$
$k \leqslant 200000$,$n, m \leqslant 30000$
首先,我们打表得出一个结论,代价一定只由一种数得出
考虑证明:
我们不妨设代价由$A$得出,且集合$S_A$和$S_B$中分别有$i$个$A$和$a - i$个$A$
那么,如果我们尝试用$B$来替换$A$,不妨设从$B$中抽了$j$个$B$扔进$A$中,且一共有$b$个$B$
那么贡献差为$i * (a - i) - ((i - j) * (a - i + j) + j * (b - j))(0 \leq j \leq min(i, b))$
化简后,为$2j^2 - j(2i - a+ b)$
这是一个开口向上的,以$j$为自变量的二次函数
最大值一定在端点取到,也就是$j = 0$或者$j = i$或者$j = b$取到
这三种情况对应着代价由$A$得出或者由$B$得出
我们可以枚举在中间的种类是哪一个
之后再枚举放在$A$中的数能取多少个
相应地我们可以知道最多可以放在$B$中多少个
可以通过背包来实现上述问题
由于实现不优,复杂度为$O(26^2 * (n+ m) + 26 * k)$
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
namespace remoon {
#define ri register int
#define tpr template <typename ra>
#define rep(iu, st, ed) for(ri iu = st; iu <= ed; iu ++)
#define drep(iu, ed, st) for(ri iu = ed; iu >= st; iu --)
#define gc getchar
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
}
int wr[], rw;
#define pc(iw) putchar(iw)
tpr inline void write(ra o, char c = '\n') {
if(!o) pc('');
if(o < ) o = -o, pc('-');
while(o) wr[++ rw] = o % , o /= ;
while(rw) pc(wr[rw --] + '');
pc(c);
}
}
using namespace std;
using namespace remoon;
#define sid 30050
#define kid 200050 char s[kid];
bool f[kid];
int n, m, k, t, cnt[]; inline int judge() {
f[] = ;
memset(f, , sizeof(f));
rep(i, , ) drep(j, k, cnt[i])
f[j] |= f[j - cnt[i]];
rep(i, n, k - m)
if(f[i]) { puts(""); return ; }
return ;
} inline void solve() {
int ans = 1e9;
rep(i, , ) {
memset(f, , (n + m) << );
f[] = ;
rep(j, , ) if(i != j)
drep(v, n + m, cnt[j]) f[v] |= f[v - cnt[j]]; rep(j, , n + m)
if(f[j]) {
int l = max(n - j, );
int r = max(m - (k - cnt[i] - j), );
if(l + r <= cnt[i]) ans = min(ans, l * r);
}
}
write(ans);
} int main() {
t = read();
while(t --) {
n = read(); m = read(); k = read();
scanf("%s", s + );
int sn = strlen(s + );
memset(cnt, , sizeof(cnt));
rep(i, , sn) ++ cnt[s[i] - 'A'];
if(judge()) continue;
solve();
}
return ;
}
CodeForces 1070J Streets and Avenues in Berhattan 性质+动态规划的更多相关文章
- Codeforces 1070J Streets and Avenues in Berhattan dp
Streets and Avenues in Berhattan 我们首先能发现在最优情况下最多只有一种颜色会分别在行和列, 因为你把式子写出来是个二次函数, 在两端取极值. 然后我们就枚举哪个颜色会 ...
- CF 1070J Streets and Avenues in Berhattan
DP的数组f其实开得不够大,应该开200000,但是它在cf上就是过了... 题意是把一堆字母分别分配到行和列. 分析一下,答案实际上只和n行中和m列中每种字母分配的个数有关.而且答案只和" ...
- 2018-2019 ICPC, NEERC J. Streets and Avenues in Berhattan(DP)
题目链接:https://codeforc.es/contest/1070/problem/J 题意:给出一个长度为 k 的字符串,选出 n 个和 m 个不同位置的字符构成两个字符串,使得两个字符串相 ...
- codeforces 447E or 446C 线段树 + fib性质或二次剩余性质
CF446C题意: 给你一个数列\(a_i\),有两种操作:区间求和:\(\sum_{i=l}^{r}(a[i]+=fib[i-l+1])\).\(fib\)是斐波那契数列. 思路 (一) codef ...
- Codeforces 1383C - String Transformation 2(找性质+状压 dp)
Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进 ...
- Codeforces 1067E - Random Forest Rank(找性质+树形 dp)
Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样 ...
- Codeforces 809C - Find a car(找性质)
Codeforces 题目传送门 & 洛谷题目传送门 首先拿到这类题第一步肯定要分析题目给出的矩阵有什么性质.稍微打个表即可发现题目要求的矩形是一个分形.形式化地说,该矩形可以通过以下方式生成 ...
- Codeforces Round #382 (Div. 2)C. Tennis Championship 动态规划
C. Tennis Championship 题目链接 http://codeforces.com/contest/735/problem/C 题面 Famous Brazil city Rio de ...
- Codeforces 822D My pretty girl Noora - 线性筛 - 动态规划
In Pavlopolis University where Noora studies it was decided to hold beauty contest "Miss Pavlop ...
随机推荐
- php imagecreatetruecolor()方法报未定义错误解决方法
更多内容推荐微信公众号,欢迎关注: php练习生成验证码方法时,使用php的 imagecreatetruecolor() 方法 报错 Fatal error: Uncaught Error: Cal ...
- python collection 中的队列
认识中的队列 在以前的认知里,队列是先进先出,就是一头进,一头出,Queue.而无意间看到了deque 双向队列. 即从该队列的头或者尾部都能插入和移除元素.而起时间复杂度竟然是一样的!O(1),是不 ...
- transform 动画效果
http://www.css88.com/tool/css3Preview/Transform.html transform的含义是:改变,使…变形:转换 transform的属性包括:rotate( ...
- Servlet笔记2--模拟Servlet本质、第一个Servlet程序、将响应结果输出到浏览器中
以下代码均非IDE开发,所以都不规范,仅供参考 模拟Servlet本质: 模拟Servlet接口: /* SUN公司制定的JavaEE规范:Servlet规范 Servlet接口是Servlet规范中 ...
- 【bzoj题解】1001 狼抓兔子
题目描述 现在小朋友们最喜欢"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
- mysql -> 启动&多实例_03
常用的连接方式: 套接字: mysql -uroot -p123 -S /application/mysql/tmp/mysql.sock Tcp/Ip: mysql -uroot -p123 -h ...
- docker stack 部署容器监控方案(cAdvisor、Prometheus、Grafana)
=============================================== 2018/7/8_第1次修改 ccb_warlock === ...
- Python基础:内置异常(未完待续)
本文根据Python 3.6.5的官文Built-in Exceptions编写,不会很详细,仅对Python的内置异常进行简单(重难点)介绍——很多异常都可以从名称判断出其意义,罗列所有的内置异常. ...
- Oracle学习笔记:parallel并行处理
在使用oracel查询时,可以通过并行提高查询速度.例如: ) from table_name a; 强行启用并行度来执行当前SQL.加上这个说明之后,可以强行启用Oracle的多线程处理功能,提高效 ...
- 20165203《Java程序设计》第五周学习总结
教材学习内容总结 第七章 内部类 注意内部类和外嵌类的关系: 外嵌类的成员变量和方法在内部类有效 内部类的类体不可以声明static变量和方法.外嵌类的类体可以用内部类声明对象. 内部类仅供它的外嵌类 ...