权限题

根据广义容斥的套路就很好做了

设\(g_i\)表示交集至少有\(i\)个元素,\(f_i\)表示交集恰好有\(i\)个元素

显然有

\[g_i=\sum_{j=i}^n\binom{j}{i}f_j
\]

二项式反演可得

\[f_i=\sum_{j=i}^n(-1)^{j-i}\binom{j}{i}g_j
\]

我们求得就是\(f_k\)

我们考虑\(g\)如何求

我们先从\(n\)个元素里选择\(j\)个元素作为我们的交集,这里是\(\binom{n}{j}\),之后对于剩下的\(n-j\)个元素构成的\(2^{n-j}\)个子集我们从里面任意选择一些,之后并上这\(j\)个元素就可以了

于是\(g_j=2^{2^{n-j}}\),就是\(2^{n-j}\)个子集都可以选或者不选

记得指数上对\(mod-1\)取模

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=1000005;
const LL mod=1000000007;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
LL fac[maxn],inv[maxn],pw[maxn];
int n,k;
inline LL ksm(LL a,int b) {
LL S=1;
while(b) {if(b&1) S=S*a%mod;b>>=1;a=a*a%mod;}
return S;
}
inline LL C(int n,int m) {
if(m>n) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main() {
n=read(),k=read();
fac[0]=1;
for(re int i=1;i<=n;i++) fac[i]=(1ll*i*fac[i-1])%mod;
inv[n]=ksm(fac[n],mod-2);
for(re int i=n-1;i>=0;--i) inv[i]=(1ll*(i+1)*inv[i+1])%mod;
pw[0]=1;
for(re int i=1;i<=n;i++) pw[i]=(2ll*pw[i-1])%(mod-1);
LL ans=0;
for(re int i=k;i<=n;i++) {
LL g=C(n,i)*ksm(2,pw[n-i])%mod;
if((i-k)&1) ans=(ans-C(i,k)*g%mod+mod)%mod;
else ans=(ans+C(i,k)*g%mod)%mod;
}
printf("%d\n",(int)ans);
return 0;
}

【bzoj 2839】集合计数的更多相关文章

  1. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  2. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  3. Bzoj 2839 集合计数 题解

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] ...

  4. bzoj 2839 集合计数 容斥\广义容斥

    LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...

  5. ●BZOJ 2839 集合计数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...

  6. [BZOJ 2839]集合计数

    Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0 ...

  7. bzoj 2839 : 集合计数 容斥原理

    因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...

  8. bzoj 2839 集合计数——二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...

  9. bzoj 2839 集合计数 —— 二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...

  10. bzoj 2839: 集合计数【容斥原理+组合数学】

    首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n} ...

随机推荐

  1. 由表生成代码:mybatis-generator入门

    application.properties ## mapper xml 文件地址 mybatis.mapper-locations=classpath*:mapper/*Mapper.xml ##数 ...

  2. 纠错帖:Zuul & Spring Cloud Gateway & Linkerd性能对比 (转载)

    纠错帖:Zuul & Spring Cloud Gateway & Linkerd性能对比  Spring Cloud  Spring Cloud Spring Cloud Gatew ...

  3. span与a元素的键盘聚焦性以及键盘点击性研究——张鑫旭

    一.众所周知的与不为所知的 我们平时涉及点击交互事件的时候,都是使用的a元素或者button元素,原因是可以相应键盘focus效果以及回车触发点击事件,这是众所周知的. 但是,可能存在一些特殊情况,我 ...

  4. 使用HttpGet协议与正则表达实现桌面版的糗事百科

    写在前面 最近在重温asp.net,找了一本相关的书籍.本书在第一章就讲了,在不使用浏览器的情况下生成一个web请求,获取服务器返回的内容.于是在网上搜索关于Http请求相关的资料,发现了很多资料都是 ...

  5. iphone设置fiddler代理测试

    iPhone上配置fiddler为代理方法: 打开IPhone, 找到你的网络连接,打开HTTP代理,输入Fiddler所在机器的IP地址(比如:192.168.1.104) 以及Fiddler的端口 ...

  6. 解决input为number类型时maxlength无效的问题

    使用input数字number类型的时候maxlength无效,假设需要控制输入数量为18,可以用以下方式: 无效: <input type="text"  maxlengt ...

  7. opencv之图像拼接

    参考博客http://blog.csdn.net/u011630458/article/details/44175965 博主:羽凌寒 之后再进行系统学习

  8. CSDN博客大事日记1

    一.       2016-10-18,申请了博客专家,但是因为PV不够,所以很荣幸的成为了一名CSDN准博客专家,接下,得更加努力了争取早日成为博客专家,在此立帖为证哦.               ...

  9. WPF tooltip 根据父元素属性决定是否显示

    例如:Placement为disable的时候,需要显示一段tooltip, 而当Placement为enable的时候,不显示 <Button Grid.Row="2" x ...

  10. TensorFlow分布式部署【单机多卡】

    让TensorFlow飞一会儿 面对大型的深度神经网络训练工程,训练的时间非常重要.训练的时间长短依赖于计算处理器也就是GPU,然而单个GPU的计算能力有限,利用多个GPU进行分布式部署,同时完成一个 ...