#\(\color{red}{\mathcal{Description}}\)

\(Link\)

司令部的将军们打算在\(N \times M\)的网格地图上部署他们的炮兵部队。一个\(N \times M\)的地图由\(N\)行\(M\)列组成,地图的每一格可能是山地(用“\(H\)” 表示),也可能是平原(用“\(P\)”表示)。并且事实上山地不能部署。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。

#\(\color{red}{\mathcal{Solution}}\)

对于这个题而言,我们考虑状压\(DP\),但是状压的时候我们会发现,他的状态是跟前两行都有关系的。所以我们不妨考虑其状态为\(dp_{i,j,k}\),及前\(i\)行、第\(i\)行状态为\(j\)、第\(i - 1\)行状态为\(k\)的部队数量。那么很显然的状态转移方程是$$dp_{i,j,k} = max { dp_{i - 1, k, l} } +getlen(j)$$

\(emmm\)我才不会告诉你一开始我把这个方程里面最后加的\(getlen(j)\)写成了\(+1\)

\(Obviously\)第一维是可以滚掉的……然后尽量还是把合法状态预处理一下比较好不预处理就会十分恶心并且我根本调不出来\(ORZ\)

#include <cstdio>
#include <cstring>
#include <iostream>
#define MAXN 1096 using namespace std ;
int tot, s[MAXN], getnum[MAXN ];
int ans, i, j, k, l, d, Mx ; char c ;
int N, M, List[MAXN], dp[2][MAXN][MAXN] ; inline int getL(int x){
int ret = 0 ;
while(x){
if(x & 1) ret ++ ;
x >>= 1 ;
}
return ret ;
}
int main(){
cin >> N >> M ;
for(i = 1; i <= N; i ++)
for(j = 1; j <= M; j ++){
cin >> c ;
if(c == 'H') List[i] += 1 << j - 1 ;
} Mx = (1 << M) - 1 ;
for(i = 0; i <= Mx; i ++){
if((i & (i >> 1)) || (i & (i >> 2)) || (i & (i << 1)) || (i & (i << 2)))
continue ;
++ tot, s[tot] = i ;
getnum[tot] = getL(i) ;
if(List[1] & i) continue ;
dp[1][0][tot] += getnum[tot] ;
}
for(i = 1; i <= tot; i ++)
for(j = 1; j <= tot; j ++){
if((s[i] & s[j]) || (s[i] & List[1]) || (s[j] & List[2])) continue ;
dp[0][i][j] = max(dp[0][i][j], dp[1][0][i] + getnum[j]) ;
}
for(d = 1, i = 3; i <= N; i ++, d ^= 1){
memset(dp[d], 0, sizeof(dp[d])) ;
for(j = 1; j <= tot; j ++){
if(s[j] & List[i]) continue ;
for(k = 1; k <= tot; k ++){
if((s[j] & s[k]) || (s[k] & List[i - 1])) continue ;
for(l = 1; l <= tot; l ++)
if((s[l] & s[k]) || (s[l] & s[j]) || (s[l] & List[i - 2])) continue ;
else dp[d][k][j] = max(dp[d][k][j], dp[d ^ 1][l][k] + getnum[j]) ;
}
}
}
for(i = 1; i <= tot; i ++)
for(j = 1; j <= tot; j ++)
ans = max(ans, dp[N & 1][i][j]) ;
cout << ans ;
}

[NOI2001]炮兵阵地 【状压DP】的更多相关文章

  1. 洛谷P2704 [NOI2001]炮兵阵地 [状压DP]

    题目传送门 炮兵阵地 题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图 ...

  2. P2704 [NOI2001]炮兵阵地 (状压DP)

    题目: P2704 [NOI2001]炮兵阵地 解析: 和互不侵犯一样 就是多了一格 用\(f[i][j][k]\)表示第i行,上一行状态为\(j\),上上行状态为\(k\)的最多的可以放的炮兵 发现 ...

  3. [NOI2001]炮兵阵地 状压DP

    题面: 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最多 ...

  4. [POJ1185][NOI2001]炮兵阵地 状压DP

    题目链接:http://poj.org/problem?id=1185 很裸的状压,考虑对于一行用二进制储存每一种的状态,但是状态太多了做不了. 观察到有很多状态都是不合法的,于是我们预处理出合法的状 ...

  5. TZOJ 4912 炮兵阵地(状压dp)

    描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P" ...

  6. POJ1185 炮兵阵地 —— 状压DP

    题目链接:http://poj.org/problem?id=1185 炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions ...

  7. poj - 1185 炮兵阵地 状压DP 解题报告

    炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21553   Accepted: 8363 Description ...

  8. luogu 2704 炮兵阵地 状压dp

    状压的基础题吧 第一次看感觉难上天,后来嘛就.. 套路:先根据自身状态筛出可行状态,再根据地图等其他限制条件筛选适合的状态加入答案 f i,j,k 分别代表 行数,本行状态,上行状态,再累加答案即可 ...

  9. POJ 1185 炮兵阵地 状压dp

    题目链接: http://poj.org/problem?id=1185 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K 问题描述 司令部的将军们打算在N*M ...

  10. 炮兵阵地 /// 状压DP oj26314

    题目大意: 炮兵阵地 设置炮兵的位置 其上两位 下两位 左两位 右两位 不能同时设置炮兵 这题是 corn fields玉米地 的升级版 可以先看下这题的注释 更详细些 第一种方法是网上大多数题解的解 ...

随机推荐

  1. 关于YII中layout中的布局和view中数据的关系

    1. view中解释php脚本后显示出的内容会在layout中以<?php echo $content?>输出. 2. view是对应的controller的实例,所以可以通过$this- ...

  2. CF696C PLEASE

    矩阵快速幂+扩展欧拉定理 对于一个矩阵\(A\),我们有\(A^n \equiv A^{n\% \phi(m)+\phi(m)}(\%m)\) 经过简单的列举或推导可得 设目前进行了\(x\)轮,\( ...

  3. CentOS 7 搭建PXC 数据库集群

    CentOS 7 搭建PXC 数据库集群 PXC( Percona XtraDB Cluster ) 特点如下: 1.同步复制,事务要么在所有节点提交或不提交,保证了数据的强一致性. 2.多主复制,可 ...

  4. 【代码笔记】iOS-左右可滑动的选择条

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...

  5. Django基础四之模板系统

    一 语法   模板渲染的官方文档 关于模板渲染你只需要记两种特殊符号(语法): {{  }}和 {% %} 变量相关的用{{}},逻辑相关的用{%%}. 二 变量 在Django的模板语言中按此语法使 ...

  6. GADL针对矢量数据格式转换的实用工具 —— ogr2ogr

    最初,因为可爱的学弟请教如何将ESRI Shapefile文件导入Google Earth接触到了Ogr2Ogr.粗略了解之后发现,这小东西功能强大. 谷歌地球支持矢量数据的展示,前提是数据符合KML ...

  7. Ubuntu-16.04-Desktop +Hadoop2.7.5+Eclipse-Neon的云计算开发环境的搭建(伪分布式方式)

    主控终端 主机名 ubuntuhadoop.smartmap.com IP 192.168.1.60 Subnet mask 255.255.255.0 Gateway 192.168.1.1 DNS ...

  8. 分布式文件系统比较出名的有HDFS  和 GFS

    分布式文件系统比较出名的有HDFS  和 GFS,其中HDFS比较简单一点.本文是一篇描述非常简洁易懂的漫画形式讲解HDFS的原理.比一般PPT要通俗易懂很多.不难得的学习资料. 1.三个部分: 客户 ...

  9. MySql与SqlServer的区别

    1.SQL Server 是Microsoft 公司推出的关系型数据库管理系统.具有使用方便可伸缩性好与相关软件集成程度高等优点,可跨越从运行Microsoft Windows 98 的膝上型电脑到运 ...

  10. .hivehistory

    在当前用户的家目录下有个.hivestory文件,里面存放了用户执行的hive操作记录,如下: [hadoop@hadoop1 hive-0.14]$ cat ~/.hivehistory show ...