Description

题库链接

给你一棵 \(n\) 个结点的有根树, \(m\) 次询问这棵树上一段路径上所有节点深度的 \(k\) 次方和。

\(1\leq n\leq 300000,1\leq k\leq 50\)

Solution

树剖之后维护 \(50\) 个前缀和数组。

只有刷水题才能维持得了生活这样子...

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 300000+5, yzh = 998244353;
int gi() {
int x = 0; char ch = getchar();
while (ch < '0' || ch > '9') ch = getchar();
while (ch >= '0' && ch <= '9') x = (x<<1)+(x<<3)+ch-48, ch = getchar();
return x;
} int n, m, u, v, k, sum[51][N];
struct tt {int to, next; }edge[N<<1];
int path[N], TP;
int size[N], top[N], fa[N], dep[N], id[N], son[N], idx; void dfs1(int u, int depth, int father) {
dep[u] = depth, size[u] = 1, fa[u] = father;
for (int i = path[u]; i; i = edge[i].next)
if (edge[i].to != father) {
dfs1(edge[i].to, depth+1, u);
size[u] += size[edge[i].to];
if (size[edge[i].to] > size[son[u]]) son[u] = edge[i].to;
}
}
void dfs2(int u, int tp) {
top[u] = tp, id[u] = ++idx;
if (son[u]) dfs2(son[u], tp);
for (int i = path[u]; i; i = edge[i].next)
if (edge[i].to != fa[u] && edge[i].to != son[u])
dfs2(edge[i].to, edge[i].to);
}
void add(int u, int v) {edge[++TP] = (tt){v, path[u]}; path[u] = TP; }
int cal(int u, int v, int k) {
int ans = 0;
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
(ans += (sum[k][id[u]]-sum[k][id[top[u]]-1]+yzh)%yzh) %= yzh;
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
(ans += (sum[k][id[u]]-sum[k][id[v]-1]+yzh)%yzh) %= yzh;
return ans;
}
void work() {
n = gi();
for (int i = 1; i < n; i++) {
u = gi(), v = gi(); add(u, v), add(v, u);
}
dfs1(1, 0, 0); dfs2(1, 1);
for (int i = 1; i <= n; i++)
for (int j = 1, val = dep[i]; j <= 50; j++, val = 1ll*val*dep[i]%yzh)
sum[j][id[i]] = val;
for (int i = 1; i <= 50; i++)
for (int j = 1; j <= n; j++)
(sum[i][j] += sum[i][j-1]) %= yzh;
m = gi();
while (m--) {
u = gi(), v = gi(), k = gi();
printf("%d\n", cal(u, v, k));
}
}
int main() {work(); return 0; }

[BJOI 2018]求和的更多相关文章

  1. 【BJOI 2018】 求和

    [题目链接] 点击打开链接 [算法] 预处理i^k的前缀和,对于每次询问,树上倍增即可 时间复杂度 : O(nk + mlog(n)) [代码] #include<bits/stdc++.h&g ...

  2. [BJOI 2018]染色

    题意:求01成立. 并查集维护,记录一个变量判断决策. #include<bits/stdc++.h> using namespace std; #define int long long ...

  3. luogu 4427 求和

    bjoi 2018 求和 唯一一道可能切的题一个数组还没开long long就成0分了 题目大意: 一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k次方和,而且每次的k可能是不同的 此处 ...

  4. luogu 4429 染色

    bjoi 2018 染色 推了个错误结论得了60分? 题目大意: 一个无重边和自环的无向图,并且对每个点分别给了一个大小为2的颜色集合,只能从这个集合中选一种颜色给这个点染色 求一个染色方案使得没有两 ...

  5. HDU 6333.Problem B. Harvest of Apples-组合数C(n,0)到C(n,m)求和-组合数学(逆元)+莫队 ((2018 Multi-University Training Contest 4 1002))

    2018 Multi-University Training Contest 4 6333.Problem B. Harvest of Apples 题意很好懂,就是组合数求和. 官方题解: 我来叨叨 ...

  6. [java大数据面试] 2018年4月百度面试经过+三面算法题:给定一个数组,求和为定值的所有组合.

    给定一个数组,求和为定值的所有组合, 这道算法题在leetcode应该算是中等偏下难度, 对三到五年工作经验主要做业务开发的同学来说, 一般较难的也就是这种程度了. 简述经过: 不算hr面,总计四面, ...

  7. HDU 6336.Problem E. Matrix from Arrays-子矩阵求和+规律+二维前缀和 (2018 Multi-University Training Contest 4 1005)

    6336.Problem E. Matrix from Arrays 不想解释了,直接官方题解: 队友写了博客,我是水的他的代码 ------>HDU 6336 子矩阵求和 至于为什么是4倍的, ...

  8. HDU 6315.Naive Operations-线段树(两棵树合并)(区间单点更新、区间最值、区间求和)+思维 (2018 Multi-University Training Contest 2 1007)

    6315.Naive Operations 题意很好理解,但是因为区间求和求的是向下取整的a[i]/b[i],所以直接分数更新区间是不对的,所以反过来直接当a[i]==b[i]的时候,线段树对应的位置 ...

  9. 2018.01.04 bzoj5291: [Bjoi2018]链上二次求和(线段树)

    传送门 线段树基础题. 题意:给出一个序列,要求支持区间加,查询序列中所有满足区间长度在[L,R][L,R][L,R]之间的区间的权值之和(区间的权值即区间内所有数的和). 想题555分钟,写题202 ...

随机推荐

  1. Android 将APK文件安装到AVD中并分析其界面结构

    配置环境变量 将android sdk 中的android-sdk\tools .android-sdk\platform-tools 添加到windows环境变量中.用于打开android sdk中 ...

  2. AOP编程的学习总结

    前几天听到一个同事说起AOP 然后就想学习下应用到项目中去,自己也是在网上找了很多的资料,之后发现 网上的大部分资料的内容几乎都是如出一撤,于是自己就整理了一下再加上这几天的学习总结到的知识写到这篇文 ...

  3. Visual Studio Code 学习.net core初体验

    一,安装 最近在用 Visual Studio Code 学习.net core ,记录下学习的过程,首先去官网下载最新的.net core2.1安装包,有windows 和mac,根据自己的开发环境 ...

  4. .net mvc使用FlexPaper插件实现在线预览PDF,EXCEL,WORD的方法

    FlexPaper插件可以实现在浏览器中在线预览pdf,word,excel等. 在网上看到很多关于这个插件实现预览的技术,但是很难做到word和excel在线预览. pdf很好实现. 首先下载相关的 ...

  5. Mongoose也是个大坑

    http://blog.csdn.net/qq_31280709/article/details/53900290 折腾了两个小时,MLGB居然是因为mongoose查询集合的时候自动加s后缀!!!

  6. OpenSL的使用

    #include <jni.h> #include <string> #include <SLES/OpenSLES.h> #include <SLES/Op ...

  7. 931. Minimum Falling Path Sum

    Given a square array of integers A, we want the minimum sum of a falling path through A. A falling p ...

  8. js闭包之我见

    很久前的一个问题终于得以解决,内心是无比喜悦的,不多说,先上代码: function test(){ for(var i=0;i<5;i++){ window.onclick=function( ...

  9. [Swift实际操作]七、常见概念-(11)路径URL的使用详解

    本文将为你演示网址对象(URL)的使用 首先导入需要使用的界面工具框架 import UIKit 接着初始化一个指定网址的网址对象 let url = URL(string: "https: ...

  10. 《JAVA与模式》之合成模式

    在阎宏博士的<JAVA与模式>一书中开头是这样描述合成(Composite)模式的: 合成模式属于对象的结构模式,有时又叫做“部分——整体”模式.合成模式将对象组织到树结构中,可以用来描述 ...