ZH奶酪:【数据结构与算法】并查集基础
1、介绍
并查集是一种树型数据结构,用于处理一些不相交集合的合并问题。
并查集主要操作有:
(1)合并两个不相交集合;
(2)判断两个元素是否属于同一个集合;
(3)路径压缩;
2、常用操作
用father[i]表示元素i的父亲结点,例如:

用某个元素所在树的根节点表示该元素所在集合;
判断两个元素是否属于同一个集合的时候,只需要判断他们所在树的根节点是否一样即可;
也就是说,当我们合并两个集合的时候,只需要在两个根节点之间连边即可。
获取根节点代码:
int findFather(int x){
if(father[x] == x)
return x;
else
return findFather(father[x]);
}
判断是否属于同一集合代码:
bool judge(int x,int y){
int fx,fy;
fx = findFather(x);
fy = findFather(y);
return fx==fy;
}
合并不同元素到同一集合代码:
void unionSet(int x,int y){
x = findFather(x);
y = findFather(y);
father[x] = y;
}
3、优化1——路径压缩
思想
每次查找的时候,如果路径较长,则修改信息,以便下次查找的时候速度更快;
步骤
(1)找到根节点;
(2)修改查找路径上的所有结点,将他们都指向根节点;
例如查找下面并查集中的“20”,“9,10,20”均在查找路径上,则进行路径压缩

带路径压缩的查找算法代码
int findFather(int x){
int r = x;
//get the root of x
while(father[r] != r)
r = father[r];
int i=x;
//update the nodes in searching path
while(i != r){
j = father[i];
father[i] = r;
i = j;
}
return r;
}
4、优化2-合并
思想
两个集合合并,也就是2棵树合并,为了降低合并后的树的深度,一般采取将深度小的树的树根作为深度大的树的树根的孩子节点。
策略
增加辅助空间记录树的深度。
合并代码:
void unionSet(int x,int y){
x = findFather(x);
y = findFather(y);
if(x == y)
return ;
if(rank[x] > rank[y]){
father[y] = x;
}else{
if(rank[x] == rank[y])
rank[y]++;
father[x] = y;
}
}
5、并查集例题
5.1、HDOJ1232(畅通工程)
http://www.cnblogs.com/CheeseZH/archive/2012/05/13/2498073.html
5.2、HDOJ1272(小希的迷宫)
http://www.cnblogs.com/CheeseZH/archive/2012/05/25/2518639.html
6、并查集练习题
(1)银河英雄传说(NOI2002)
(2)食物链(NOI2001)
(3)Parity(ceoi99)
ZH奶酪:【数据结构与算法】并查集基础的更多相关文章
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...
- 数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法
算法复杂度主方法 有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来. 一.复杂度主方法 主方法,也可以叫主定理.对于那些用分治法 ...
- 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号
算法复杂度及渐进符号 一.算法复杂度 首先每个程序运行过程中,都要占用一定的计算机资源,比如内存,磁盘等,这些是空间,计算过程中需要判断,循环执行某些逻辑,周而反复,这些是时间. 那么一个算法有多好, ...
- 近期公共祖先(LCA)——离线Tarjan算法+并查集优化
一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...
- BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集
2342: [Shoi2011]双倍回文 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1123 Solved: 408 题目连接 http://w ...
- POJ1861 Network (Kruskal算法 +并查集)
Network Description Andrew is working as system administrator and is planning to establish a new net ...
- [学习笔记]可持久化数据结构——数组、并查集、平衡树、Trie树
可持久化:支持查询历史版本和在历史版本上修改 可持久化数组 主席树做即可. [模板]可持久化数组(可持久化线段树/平衡树) 可持久化并查集 可持久化并查集 主席树做即可. 要按秩合并.(路径压缩每次建 ...
- 【HDU1232】畅通工程(并查集基础题)
裸敲并查集,很水一次AC #include <iostream> #include <cstring> #include <cstdlib> #include &l ...
随机推荐
- Html的学习随笔
在<head>的<style>中定义样式,有#号,比如#header就是定义一种名为header的样式,后面用id=header来调用:而无#号,比如直接就是header,那后 ...
- How to Make Portable Class Libraries Work for You
A Portable Class Library is a .NET library that can be used (in binary form, without recompiling) on ...
- 关于TFS2010 远程无法创建团队项目的若干问题总结
今天遇到一个TFS的问题,折腾了好几个小时,故将其记录,给有遇到类似问题的朋友一些参考. 1.本文前提:服务器端只安装了TFS2010,本地没有安装Visual Studio 2010,因此不能在服务 ...
- 为iOS应用制作一个二维码
第一步:找到你发布的ios应用的下载链接: 第二步:使用二维码转换器,将下载链接转换成 二维码.http://my.qzone.qq.com/app/100699951.html?via=appcen ...
- iframe在ie和firefox中的高度兼容性问题解决
1.问题描述: <iframe src="p_photo_cont_iframe.html" name="iframe" width="700& ...
- 使用IP访问Mantis显示空白页的解决办法
使用http://localhost/mantis/ 可成功访问Mantis,但使用IP地址:http://172.16.20.111/Mantis却访不了,显示“无法显示网页”. 在aphache中 ...
- HTTP 无状态啊无状态啊
无状态的根本原因 根本原因是:因为,HTTP协议使用的是Socket套接字TCP连接的,每次监听到的套接字连接是不可能一个个保存起来的.(很消耗资源,假如一个人服务器只保存一个通信连接,一万个岂不是要 ...
- [Mongo] 解决mongoose不支持条件操作符 $gt$gte:$lte$ne $in $all $not
reference : http://blog.sina.com.cn/s/blog_4df23d840100u25x.html 找到mongoose的安装目录 /usr/local/lib/node ...
- u-boot支持yaffs映像烧写的补丁
u-boot的nand flash驱动有两个版本,似乎是以u-boot1..5为分界点的,之前的版本使用的是自己写的nand flash驱动,而后面的版本使用的是linux内核中nand flash的 ...
- NFS CIFS SAMBA 的联系和区别
Common Internet File System, CIFS Server Message Block, SMB Network File System, NFS 在早期网络世界当中,档案数据在 ...