ZH奶酪:【数据结构与算法】并查集基础
1、介绍
并查集是一种树型数据结构,用于处理一些不相交集合的合并问题。
并查集主要操作有:
(1)合并两个不相交集合;
(2)判断两个元素是否属于同一个集合;
(3)路径压缩;
2、常用操作
用father[i]表示元素i的父亲结点,例如:

用某个元素所在树的根节点表示该元素所在集合;
判断两个元素是否属于同一个集合的时候,只需要判断他们所在树的根节点是否一样即可;
也就是说,当我们合并两个集合的时候,只需要在两个根节点之间连边即可。
获取根节点代码:
int findFather(int x){
if(father[x] == x)
return x;
else
return findFather(father[x]);
}
判断是否属于同一集合代码:
bool judge(int x,int y){
int fx,fy;
fx = findFather(x);
fy = findFather(y);
return fx==fy;
}
合并不同元素到同一集合代码:
void unionSet(int x,int y){
x = findFather(x);
y = findFather(y);
father[x] = y;
}
3、优化1——路径压缩
思想
每次查找的时候,如果路径较长,则修改信息,以便下次查找的时候速度更快;
步骤
(1)找到根节点;
(2)修改查找路径上的所有结点,将他们都指向根节点;
例如查找下面并查集中的“20”,“9,10,20”均在查找路径上,则进行路径压缩

带路径压缩的查找算法代码
int findFather(int x){
int r = x;
//get the root of x
while(father[r] != r)
r = father[r];
int i=x;
//update the nodes in searching path
while(i != r){
j = father[i];
father[i] = r;
i = j;
}
return r;
}
4、优化2-合并
思想
两个集合合并,也就是2棵树合并,为了降低合并后的树的深度,一般采取将深度小的树的树根作为深度大的树的树根的孩子节点。
策略
增加辅助空间记录树的深度。
合并代码:
void unionSet(int x,int y){
x = findFather(x);
y = findFather(y);
if(x == y)
return ;
if(rank[x] > rank[y]){
father[y] = x;
}else{
if(rank[x] == rank[y])
rank[y]++;
father[x] = y;
}
}
5、并查集例题
5.1、HDOJ1232(畅通工程)
http://www.cnblogs.com/CheeseZH/archive/2012/05/13/2498073.html
5.2、HDOJ1272(小希的迷宫)
http://www.cnblogs.com/CheeseZH/archive/2012/05/25/2518639.html
6、并查集练习题
(1)银河英雄传说(NOI2002)
(2)食物链(NOI2001)
(3)Parity(ceoi99)
ZH奶酪:【数据结构与算法】并查集基础的更多相关文章
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...
- 数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法
算法复杂度主方法 有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来. 一.复杂度主方法 主方法,也可以叫主定理.对于那些用分治法 ...
- 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号
算法复杂度及渐进符号 一.算法复杂度 首先每个程序运行过程中,都要占用一定的计算机资源,比如内存,磁盘等,这些是空间,计算过程中需要判断,循环执行某些逻辑,周而反复,这些是时间. 那么一个算法有多好, ...
- 近期公共祖先(LCA)——离线Tarjan算法+并查集优化
一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...
- BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集
2342: [Shoi2011]双倍回文 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1123 Solved: 408 题目连接 http://w ...
- POJ1861 Network (Kruskal算法 +并查集)
Network Description Andrew is working as system administrator and is planning to establish a new net ...
- [学习笔记]可持久化数据结构——数组、并查集、平衡树、Trie树
可持久化:支持查询历史版本和在历史版本上修改 可持久化数组 主席树做即可. [模板]可持久化数组(可持久化线段树/平衡树) 可持久化并查集 可持久化并查集 主席树做即可. 要按秩合并.(路径压缩每次建 ...
- 【HDU1232】畅通工程(并查集基础题)
裸敲并查集,很水一次AC #include <iostream> #include <cstring> #include <cstdlib> #include &l ...
随机推荐
- TF-timeline的使用经验记录
timeline的使用经验记录:https://towardsdatascience.com/howto-profile-tensorflow-1a49fb18073d 看了TF-summit2018 ...
- SGU 405 Totalizator
405. Totalizator Time limit per test: 0.25 second(s)Memory limit: 65536 kilobytes input: standardout ...
- TensorFlow安装和HelloWorld
TensorFlow安装 TensorFlow可以在各种操作系统上面安装.安装的时候要注意TensorFlow的类型,一种是普通的版本,仅支持CPU,安装简单.另外一种类型带GPU的,可以利用GPU来 ...
- Linux中文件/文本的中文乱码解决方法
Linux显示在Windows编辑过的中文就会显示乱码是由于两个操作系统使用的编码不同所致.Linux下使用的编码是utf8,而Windows使用的是gb18030.因此,解决Linux打开txt/c ...
- js ajax post 提交的时候后台接收不到参数,但是代码没有错,怎么回事
这个错误有两点,你自己写的php页面里面的参数接收出错了 还有就是你没有写一句重要的代码告诉浏览器 你使用post提交方式去提交 xhr.setRequestHeader("Content- ...
- 嵌入式设备hacking(转)
原帖地址:http://drops.wooyun.org/papers/5157 0x00 IPCAM hacking TOOLS github-binwalk firmware-mod-kit ID ...
- A profile to detect when a SMS database has been changed
http://webmail.dev411.com/t/gg/tasker/12bdddbsak/a-profile-to-detect-when-a-sms-has-been-sent A bela ...
- Hibernate: Implicit & Explicit Polymorphism
As I was going through the various inheritance strategies in Hibernate, I came across the ‘class’ el ...
- MVC对集合筛选,不使用Where(),而使用FindAll()
当想对集合筛选的时候,经常想到用Where过滤,而实际上List<T>.FindAll()也是不错的选择. 如果有一个订单,属性有下单时间.区域等等.如何使用List<T>.F ...
- Android实例剖析笔记(二)
摘要:用实例讲解Andriod的开发过程,以NotesList为实例介绍Android的菜单机制 简介 android提供了三种菜单类型,分别为options menu,context menu,su ...