我实在是不想再打一遍树状数组套替罪羊树了。。。

然后在普通平衡树瞎逛的时候找到了以前看过vector题解

于是我想:为啥不把平衡树换成vector呢???

然后我又去学了一下ZKW线段树

就用ZKW线段树套vector水过啦!!!

每个ZKW线段树的节点保存一个vector

操作1在分出的vector上查询比它小的数有多少个然后相加再加1

操作2二分再上操作1

操作3修改需要修改的节点的vector

操作4在分出vector上查询前驱取最大

操作5与操作4同理

luogu主站5772ms上卡过,开O2的话2296ms,bzoj上8196ms,COGS上直接过

// It is made by XZZ
#include<cstdio>
#include<algorithm>
#include<vector>
#define il inline
#define rg register
#define vd void
#define sta static
using std::vector;
typedef long long ll;
il int gi(){
rg int x=0,f=1;rg char ch=getchar();
while(ch<'0'||ch>'9')f=ch=='-'?-1:f,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
const int maxn=50001;
int lb[maxn],W[maxn],n,N=65536,m;
typedef const int& fast;
vector<int>d[65537<<1];
vector<int>::iterator it;
il vd Insert(fast x,fast y){d[x].insert(upper_bound(d[x].begin(),d[x].end(),y),y);}
il vd Erase(fast x,fast y){d[x].erase(lower_bound(d[x].begin(),d[x].end(),y));}
il int Rank(fast x,fast y){return lower_bound(d[x].begin(),d[x].end(),y)-d[x].begin();}
il int Kth(fast x,fast y){return d[x][y-1];}
il int Prev(fast x,fast y){
it=lower_bound(d[x].begin(),d[x].end(),y);
if(it==d[x].begin())return -2147483647;
return *--it;
}
il int Next(fast x,fast y){
it=upper_bound(d[x].begin(),d[x].end(),y);
if(it==d[x].end())return 2147483647;
return *it;
}
il vd UPD1(rg int x,fast y){for(x+=N;x;x>>=1)Insert(x,y);}
il vd UPD2(rg int x,fast y){for(x+=N;x;x>>=1)Erase(x,y);}
il int max(fast a,fast b){return a>b?a:b;}
il int min(fast a,fast b){return a<b?a:b;}
il int RNK(rg int l,rg int r,fast k){
sta int ret;ret=1;
for(l+=N-1,r+=N+1;l^r^1;l>>=1,r>>=1){
if(~l&1)ret+=Rank(l^1,k);
if(r&1)ret+=Rank(r^1,k);
}return ret;
}
il int PRE(rg int l,rg int r,fast k){
sta int ret;ret=-2147483647;
for(l+=N-1,r+=N+1;l^r^1;l>>=1,r>>=1){
if(~l&1)ret=max(ret,Prev(l^1,k));
if(r&1)ret=max(ret,Prev(r^1,k));
}return ret;
}
il int NXT(rg int l,rg int r,fast k){
sta int ret;ret=2147483647;
for(l+=N-1,r+=N+1;l^r^1;l>>=1,r>>=1){
if(~l&1)ret=min(ret,Next(l^1,k));
if(r&1)ret=min(ret,Next(r^1,k));
}return ret;
}
int main(){
n=gi(),m=gi();
for(N=1;N<n;N<<=1)
for(rg int i=1;i<=n;++i)lb[i]=i&-i;
for(rg int i=1;i<=n;++i){
W[i]=gi();
UPD1(i,W[i]);
}
int opt,l,r,k;
while(m--){
opt=gi();
if(opt==3)l=gi(),k=gi();
else l=gi(),r=gi(),k=gi();
if(opt==1)printf("%d\n",RNK(l,r,k));
else if(opt==2){
sta int ll,rr,mid;
ll=0,rr=100000000;
while(ll<rr){
mid=((ll+rr)>>1)+1;
if(RNK(l,r,mid)>k)rr=mid-1;
else ll=mid;
}printf("%d\n",ll);
}else if(opt==3)UPD2(l,W[l]),UPD1(l,W[l]=k);
else if(opt==4)printf("%d\n",PRE(l,r,k));
else if(opt==5)printf("%d\n",NXT(l,r,k));
else while(1);
}
return 0;
}

BZOJ3196 二逼平衡树 ZKW线段树套vector(滑稽)的更多相关文章

  1. BZOJ3196 二逼平衡树 【线段树套平衡树】

    题目 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查询k在区间内的前驱(前驱 ...

  2. bzoj 3196 Tyvj 1730 二逼平衡树(线段树套名次树)

    3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1807  Solved: 772[Submit][Stat ...

  3. bzoj 3196/ Tyvj 1730 二逼平衡树 (线段树套平衡树)

    3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description ...

  4. BZOJ 3196 Tyvj 1730 二逼平衡树:线段树套splay

    传送门 题意 给你一个长度为 $ n $ 有序数列 $ a $ ,进行 $ m $ 次操作,操作有如下几种: 查询 $ k $ 在区间 $ [l,r] $ 内的排名 查询区间 $ [l,r] $ 内排 ...

  5. [BZOJ3196] [Tyvj1730] 二逼平衡树(线段树 套 Splay)

    传送门 至少BZOJ过了,其他的直接弃. 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的 ...

  6. bzoj 3196 Tyvj 1730 二逼平衡树【线段树 套 splay】

    四舍五入就是个暴力. 对于线段树的每个区间都开一棵按权值排序的splay 对于第二个操作,二分一下,每次查询mid的排名,复杂度 $ O(nlog(n)^{3}) $ 其余的操作都是$ O(nlog( ...

  7. 【bzoj3196-二逼平衡树】线段树套平衡树

    http://acm.hust.edu.cn/vjudge/problem/42297 [题目描述] 写一种数据结构,来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间 ...

  8. BZOJ3196二逼平衡树——线段树套平衡树(treap)

    此为平衡树系列最后一道:二逼平衡树您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询 ...

  9. bzoj3196 二逼平衡树 树状数组套线段树

    题目传送门 思路:树状数组套线段树模板题. 什么是树状数组套线段树,普通的树状数组每个点都是一个权值,而这里的树状数组每个点都是一颗权值线段树,我们用前缀差分的方法求得每个区间的各种信息, 其实关键就 ...

随机推荐

  1. RDMBorderedButton

    RDMBorderedButton https://github.com/reesemclean/RDMBorderedButton 效果: 源码: RDMBorderedButton.h + RDM ...

  2. Linux学习之路-2017/12/25

    三章  命令通配符 .PATH变量 支持多种文本的通配符 通配符                   含义 * 匹配零个或多个字符    ?   匹配任意单个字符 [0-9]   匹配范围内的数字 [ ...

  3. (1)构造方法和方法重载 (2)this关键字 (3)方法的传参和递归调用

    1.构造方法和方法重载如: Person p = new Person(); - 声明Person类型的引用p指向Person类型的对象 p.show(); - 调用名字为show()的成员方法 1. ...

  4. Flex布局及其应用

    什么是弹性盒子? 弹性盒子是 CSS3 的一种新的布局模式.相对于传统的依赖于display+position+float的布局方式,弹性盒子更加以有效的方式来对一个容器中的子元素进行排列.对齐和分配 ...

  5. PHP设计模式系列 - 数据访问对象模式

    数据访问对象模式 数据访问对象模式描述了如何创建透明访问数据源的对象. 场景设计 设计一个BaseDao基类,实现数据库操作基本的一些query,insert,update方法 在实际使用的过程中,继 ...

  6. 页面中图片以背景图形式展示好还是以img标签形式展示

    img和background-image的异同: img是网页结构层面上的标签,页面中多一个img标签就会多一次http请求,且当我们浏览页面时,img标签作为网页结构的一部分,会在浏览器加载结构的过 ...

  7. 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】

    (题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...

  8. Java8新特性 -- Lambda 方法引用和构造器引用

    一. 方法引用: 若Lambda体中的内容有方法已经实现了,我们可以使用“方法引用” 要求 方法的参数和返回值类型 和 函数式接口中的参数类型和返回值类型保持一致. 主要有三种语法格式: 对象 :: ...

  9. 理解JVM——类加载机制

    我们在编写Java程序之后,会通过编译器得到一个class文件,这个class文件是如何与JVM进行配合的呢?类中的信息是如何变成JVM可以使用的Java类型呢?这些都是类加载机制做到的. 虚拟机把描 ...

  10. Hive学习之路 (九)Hive的内置函数

    数学函数 Return Type Name (Signature) Description DOUBLE round(DOUBLE a) Returns the rounded BIGINT valu ...