题目链接: Assignment

 题意:

  给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k。

题解:

  RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相当于求出了每个区间的最大值-最小值。那么现在我们枚举左端点,二分右端点就可以在n×logn×logn的时间内过。

 #include<bits/stdc++.h>
using namespace std;
const int MAX_N = 1e5+;
int vec[MAX_N];
int dp1[MAX_N][];
int dp2[MAX_N][];
long long ans = ;
int N,M,T;
void ST(int N)
{
for(int i=;i<=N;i++) dp1[i][] = dp2[i][] = vec[i];
for(int j=;(<<j)<=N;j++)
{
for(int i=;i+(<<j)-<=N;i++)
{
dp1[i][j] = max(dp1[i][j-],dp1[i+(<<j-)][j-]);
dp2[i][j] = min(dp2[i][j-],dp2[i+(<<j-)][j-]);
}
}
}
int RMQ(int l,int r)
{
int k = ;
while(<<k+ <= r-l+) k++;
int maxn = max(dp1[l][k],dp1[r-(<<k)+][k]);
int minn = min(dp2[l][k],dp2[r-(<<k)+][k]);
return maxn-minn;
}
int main()
{
cin>>T;
while(T--)
{
cin>>N>>M;
ans = ;
for(int i=;i<=N;i++) scanf("%d",&vec[i]);
ST(N);
for(int i=;i<=N;i++)
{
int l =i,r = N;
while(l<=r)
{
int mid = (l+r)>>;
if(RMQ(i,mid) < M) l = mid+;
else r = mid-;
}
ans += (l-) - i +;
}
cout<<ans<<endl;
}
return ;
}

  还有一种解法是用两个单调队列维护区间的最大和最小值,让我收益颇多@。@!用双端队列构成单调队列,一个维护最大值,一个维护最小值,从左向右枚举右端点。现在我们知道了这个区间的最大值和最小值,如果最大值减去最小值是小于k的则当前的左端点到右端点里面所有的区间都是符合条件的。直到枚举到一个右端点,使得最大值减最小值>=k,则开始移动左端点删去两个队列中左端点的值(如果有的话),直到区间重新符合条件。用单调队列处理的话复杂度为(O(n))。

 #include<bits/stdc++.h>
using namespace std;
const int MAX_N = 1e5+;
long long vec[MAX_N];
deque<long long> que1,que2;
int main()
{
long long N,M,T;
cin>>T;
while(cin>>N>>M)
{
while(!que1.empty()) que1.pop_back();
while(!que2.empty()) que2.pop_back();
for(int i=;i<N;i++) scanf("%lld",&vec[i]);
int pos = ;
long long ans = ;
for(int i=;i<N;i++)
{
while(!que1.empty() && que1.back() < vec[i]) que1.pop_back();
que1.push_back(vec[i]);
while(!que2.empty() && que2.back() > vec[i]) que2.pop_back();
que2.push_back(vec[i]);
while(!que1.empty() && !que2.empty() && que1.front() - que2.front() >= M)
{
ans += (i-pos);
if(que1.front() == vec[pos]) que1.pop_front();
if(que2.front() == vec[pos]) que2.pop_front();
pos++;
}
}
while(pos < N)
{
ans += (N-pos);
pos ++;
}
cout<<ans<<endl;
}
return ;
}

HDU - 5289 Assignment (RMQ+二分)(单调队列)的更多相关文章

  1. HDU 5289 Assignment(二分+RMQ-ST)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  2. HDU 5289 Assignment (二分+区间最值)

    [题目链接]click here~~ [题目大意]: 给出一个数列,问当中存在多少连续子序列,子序列的最大值-最小值<k [思路]:枚举数列左端点.然后二分枚举右端点,用ST算法求区间最值.(或 ...

  3. HDU 5289 Assignment rmq

    Assignment 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5289 Description Tom owns a company and h ...

  4. hdu 5289 Assignment (ST+二分)

    Problem Description Tom owns a company and he is the boss. There are n staffs which are numbered fro ...

  5. HDU 5289 Assignment(单调队列)

    题意:给T足数据,然后每组一个n和k,表示n个数,k表示最大同意的能力差,接下来n个数表示n个人的能力,求能力差在k之内的区间有几个 分析:维护一个区间的最大值和最小值,使得他们的差小于k,于是採用单 ...

  6. 两种解法-树形dp+二分+单调队列(或RMQ)-hdu-4123-Bob’s Race

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4123 题目大意: 给一棵树,n个节点,每条边有个权值,从每个点i出发有个不经过自己走过的点的最远距离 ...

  7. HDU 5289 Assignment [优先队列 贪心]

    HDU 5289 - Assignment http://acm.hdu.edu.cn/showproblem.php?pid=5289 Tom owns a company and he is th ...

  8. [BZOJ1044][HAOI2008]木棍分割 二分 + 单调队列优化dp + 滚动数组优化dp

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  9. NOIP模拟 最佳序列 - 二分 + 单调队列

    题意: 各一个n(\(\le 20000\))的序列,定义纯洁序列为长度len满足\(L \le len \le R\)的序列,纯洁值为某一纯洁序列的平局值,输出所有纯洁序列中最大平均值. 分析: 二 ...

随机推荐

  1. [翻译] CoreImage-with-EAGLContext

    CoreImage-with-EAGLContext https://github.com/anaglik/CoreImage-with-EAGLContext Simple example of d ...

  2. [翻译] SCViewShaker

    SCViewShaker https://github.com/rFlex/SCViewShaker About A highly configurable UIView category for s ...

  3. CSS学习摘要-定位实例

    CSS学习摘要-定位实例 注:全文摘自MDN-CSS定位实例 列表消息盒子 我们研究的第一个例子是一个经典的选项卡消息框,你想用一块小区域包括大量信息时,一个非常常用的特征.这包括含有大信息量的应用, ...

  4. 铁乐学python_Day41_线程01

    线程概念的引入背景 进程 之前我们已经了解了操作系统中进程的概念,程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程序就称之为进程. 程序和进程的区别就在于: 程序是 ...

  5. 【Excel】坐下,VLOOKUP基本操作

    坐下,VLOOKUP基本操作   VLOOKUP如何使用我就不在这里详细介绍了,简单说一下好了.     如上图,第一个填写你要查找的值,第二个空选取你查找的范围,第三个空填你要得到第几列的值,最后选 ...

  6. November 23rd 2016 Week 48th Wednesday

    I always like walking in the rain, so no one can see me crying. 我一直喜欢在雨中行走,那样就没人能看到我的眼泪. I like walk ...

  7. 破解myeclipse10失败的一个奇葩原因

    昨天开发用的myeclipse10突然弹窗提示我要激活,我清楚的记得安装时候已经破解并且看到激活信息了. 翻遍搜索出来的文章,改systemid之类的也试过了,问题依旧存在,很是绝望. 今早过来机灵了 ...

  8. jQuery实现滚动时动态加载页面内容

    有些网站的网页内容不是一次性加载完毕的,而是在鼠标向下滚动时动态加载的,这是怎么做到的呢?看下面代码: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

  9. 【bzoj 4154】[Ipsc2015]Generating Synergy

    题目 大概已经掌握熟练码出\(kdt\)的技能了 发现距离子树根节点\(x\)不超过\(l\)的点可以用两种方式来限制,首先\(dfs\)序在\([dfn_x,dfn_x+sum_x)\)中,深度自然 ...

  10. ASP.NET Core读取appsettings.json配置文件信息

    1.在配置文件appsettings.json里新增AppSettings节点 { "Logging": { "LogLevel": { "Defau ...