//核心代码如下
//Queen--放置皇后 #include "queue.h" queue::queue()
{
const int maxn = *;
this->QN = ;
this->board = new bool[maxn];
for (int i = ; i < maxn; i++) {
this->board[i] = false;
}
this->judgeRecursion = true;
this->count = ;
} queue::queue(int N)
{
const int maxn = ;
if (N > || N < )
this->QN = ; //如果不合法就正规化棋盘
else
this->QN = N;
this->board = new bool[maxn];
for (int i = ; i < maxn; ++i) //初始化棋盘,未放置棋子的棋盘设置为false
this->board[i] = false;
this->judgeRecursion = true;
this->count = ;
} bool queue::available (const int Crow, const int Ccol) const //当前行,当前列
{
for (int hor = ; hor < Crow; ++hor) {
//纵向查找
if (board[hor * QN + Ccol]) //已经放置皇后的棋盘处为true
return false; //则返回false--放置不合法
}
int obli = Crow, oblj = Ccol;
while (obli > && oblj > ) {
if (board[(--obli) * QN + (--oblj)])
return false; //左斜上查找
}
obli = Crow, oblj = Ccol;
while (obli > && oblj < QN - ) {
if (board[(--obli) * QN + (++oblj)])
return false; //右斜上查找
}
return true; //都没有,则该位置可以放置皇后
} //打印棋盘
void queue::show (bool *Q)
{
const int maxn = ;
for (int i = ; i < maxn; i++)
Q[i] = this->board[i];
} //重新初始化棋盘
void queue::reset ()
{
const int maxn = ;
for (int i = ; i < maxn; i++)
this->board[i] = false;
this->judgeRecursion = true;
this->count = ;
} void queue::reset (int N)
{
const int maxn = ;
if (N < || N > ) this->QN = ;
else
this->QN = N; for (int i = ; i < maxn; i++)
this->board[i] = false;
this->judgeRecursion = true;
this->count = ;
} queue::~queue ()
{
delete []board;
board = nullptr;
} /**
* @brief queue::answer --- 放置皇后
* @param solu --- 求解的方法数
* @param Crow --- 当前的行数
* @param Q --- 棋盘,用来打印
*/
void queue::answer (int solu, int cur, bool *Q)
{
if (!judgeRecursion) //递归结束,中断
return;
if (cur == QN) { //当前行到最后一行,则一种方案结束
count++;
if (count == solu) { //递归到第solu方案时停止
this->show (Q);
judgeRecursion = false; //停止递归
return;
}
return;
}
else
{
for (int col = ; col < QN; col++)
{
if (available (cur, col)) //检查当前行,列
{
board[cur * QN + col] = true; //合法则放置皇后
answer (solu, cur + , Q); //递归下一行
//如果回溯法中使用了辅助的全局变量,则一定要及时把它们恢复原状.
//特别的,若函数有多个出口,则需在每个出口处恢复被修改的值
board[cur * QN + col] = false;
}
}
}
}

源代码下载地址:链接:https://pan.baidu.com/s/12BTDR8pRMvxpKYNFb988EQ 密码:yk0o

八皇后问题_Qt_界面程序实现的更多相关文章

  1. Python学习二(生成器和八皇后算法)

    看书看到迭代器和生成器了,一般的使用是没什么问题的,不过很多时候并不能用的很习惯 书中例举了经典的八皇后问题,作为一个程序员怎么能够放过做题的机会呢,于是乎先自己来一遍,于是有了下面这个ugly的代码 ...

  2. VC版八皇后

    一.  功能需求: 1. 可以让玩家摆棋,并让电脑推断是否正确 2. 能让电脑给予帮助(给出全部可能结果) 3. 实现悔棋功能 4. 实现重置功能 5. 加入点按键音效果更佳 二.  整体设计计: 1 ...

  3. 比赛组队问题 --- 递归解法 --- java代码 --- 八皇后问题

    两队比赛,甲队为A.B.C3人,乙队为X.Y.Z3人.已知A不和X比,C不和X.Z比,请编程序找出3队赛手名单 采用了与八皇后问题相似的解法,代码如下: 如有疑问请链接八皇后问题的解法:http:// ...

  4. 基于visual Studio2013解决C语言竞赛题之1074八皇后

        题目 解决代码及点评 /************************************************************************/ /* ...

  5. 八皇后问题详细分析与解答(递归法解答,c#语言描述)

    八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题.该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或 ...

  6. C语言数据结构----递归的应用(八皇后问题的具体流程)

    本节主要讲八皇后问题的基本规则和递归回溯算法的实现以及具体的代码实现和代码分析. 转载请注明出处.http://write.blog.csdn.net/postedit/10813257 一.八皇后问 ...

  7. ACM:回溯,八皇后问题,素数环

    (一)八皇后问题 (1)回溯 #include <iostream> #include <string> #define MAXN 100 using namespace st ...

  8. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  9. c++(八皇后)

    八皇后是一道很具典型性的题目.它的基本要求是这样的:在一个8*8的矩阵上面放置8个物体,一个矩阵点只允许放置一个物体,任意两个点不能在一行上,也不能在一列上,不能在一条左斜线上,当然也不能在一条右斜线 ...

随机推荐

  1. 作业一:android开发平台的演变以及Android Studio设置

    目录:     ①. 从Eclipse到Android Studio   ②. Android Studio的下载和安装   ③. 用户习惯设置以及快捷键   ④. SDK路径重新设置 ↓点此跳转到文 ...

  2. BLE 蓝牙协议栈开发

    1.由浅入深,蓝牙4.0/BLE协议栈开发攻略大全(1) 2.由浅入深,蓝牙4.0/BLE协议栈开发攻略大全(2) 3.由浅入深,蓝牙4.0/BLE协议栈开发攻略大全(3)

  3. Android 手机怎么录屏制成gif图片

    参考:http://www.cnblogs.com/dasusu/p/4903511.html 上面的博主说的很详细了,但作为学习记录我就重新写一遍帮助自己加深记忆 一.准备条件 1.你搭建了Andr ...

  4. Matplotlib 学习笔记

    注:该文是上了开智学堂数据科学基础班的课后做的笔记,主讲人是肖凯老师. 数据绘图 数据可视化的原则 为什么要做数据可视化? 为什么要做数据可视化?因为可视化后获取信息的效率高.为什么可视化后获取信息的 ...

  5. PyChram中同目录下import引包报错的解决办法?

    相信很多同学和我一样在PyChram工具中新建python项目的同目录下import引包会报错提示找不到,这是因为该项目找不到python的环境导致的: 如果文件开始的时候包引包的错误可以,都可以用用 ...

  6. Python基础7:文件操作

    [ 文件操作] 1 对文件操作流程 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 现有文件如下: 昨夜寒蛩不住鸣. 惊回千里梦,已三更. 起来独自绕阶行. 人悄悄,帘外月胧 ...

  7. WinForm------GridControl添加底部合计框

    1.在GridView属性中找到"OptionsView" => "ShowFooter" = true 2.打开编辑器,如图 . 3.获取统计数据(注意 ...

  8. elasticsearch snapshot

    一.Repositories 在elasticsearch.yml文件中增加path.repo路径配置: $ vim /etc/elasticsearch/elasticsearch.yml path ...

  9. 解析Java类和对象的初始化过程

    类的初始化和对象初始化是 JVM 管理的类型生命周期中非常重要的两个环节,Google 了一遍网络,有关类装载机制的文章倒是不少,然而类初始化和对象初始化的文章并不多,特别是从字节码和 JVM 层次来 ...

  10. Windows7微软官方原版镜像系统文件

    Windows7微软官方原版镜像系统 Windows 7 是由微软公司(Microsoft)开发的操作系统,核心版本号为Windows NT 6.1.Windows 7可供家庭及 商业工作环境.笔记本 ...