HDU1492/The number of divisors(约数) about Humble Numbers
The number of divisors(约数) about Humble Numbers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3416 Accepted Submission(s): 1676
Problem Description
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, … shows the first 20 humble numbers.
Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.
Input
The input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n.
Output
For each test case, output its divisor number, one line per case.
Sample Input
4
12
0
Sample Output
3
6
Author
lcy
Source
“2006校园文化活动月”之“校庆杯”大学生程序设计竞赛暨杭州电子科技大学第四届大学生程序设计竞赛
/*
求一个数的约数:x=p1^x1 * p2^x2 * p3^x3.....
p1\p2\p3分别为素数,那么x的约数的个数就是ans=(x1+1)*(x2+1)*(x2+1)....
*/
#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
typedef long long LL;
using namespace std;
int a[6]={2,3,5,7};
int main ()
{
LL n;
while(scanf("%lld",&n),n)
{
LL ans=1;
int i=0;
int t=0;
while(n)
{
if(n%a[i]==0)
{
t++;
n/=a[i];
}
else
{
ans*=(t+1);
t=0;
i++;
if(n==1)
break;
}
}
printf("%lld\n",ans);
}
return 0;
}
HDU1492/The number of divisors(约数) about Humble Numbers的更多相关文章
- The number of divisors(约数) about Humble Numbers[HDU1492]
The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- The number of divisors(约数) about Humble Numbers
The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- HDUOJ---The number of divisors(约数) about Humble Numbers
The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- HDU - The number of divisors(约数) about Humble Numbers
Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence ...
- HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...
- hdu-1492 The number of divisors(约数) about Humble Numbers---因子数公式
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1492 题目大意: 给出一个数,因子只有2 3 5 7,求这个数的因子个数 解题思路: 直接求出指数即 ...
- [poj2247] Humble Numbers (DP水题)
DP 水题 Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The se ...
- A - Humble Numbers
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Pract ...
- Humble Numbers
Humble Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9988 Accepted: 4665 Descri ...
随机推荐
- hdu_3341_Lost's revenge(AC自动机+状态hashDP)
题目链接:hdu_3341_Lost's revenge 题意: 有n个模式串,一个标准串,现在让标准串重组,使得包含最多的模式串,可重叠,问重组后最多包含多少模式串 题解: 显然是AC自动机上的状态 ...
- HDU 1509 Windows Message Queue(队列)
题目链接 Problem Description Message queue is the basic fundamental of windows system. For each process, ...
- 一步一步学EF系列1【Fluent API的方式来处理实体与数据表之间的映射关系】
EF里面的默认配置有两个方法,一个是用Data Annotations(在命名空间System.ComponentModel.DataAnnotations;),直接作用于类的属性上面,还有一个就是F ...
- css样式的部分拓展, NuMber对象、 BoM、 DoM对象的模型的间述,ing...
css部分代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> < ...
- 洛谷-三连击(升级版)-BOSS战-入门综合练习1
题目描述 Description 将1,2,…,9共9个数分成三组,分别组成三个三位数,且使这三个三位数构成A:B:C的比例,试求出所有满足条件的三个三位数,若无解,输出“No!!!”. 输入输出格 ...
- 关于springboot启动时候报错:springboot Failed to parse configuration class [Application]
把运行的java类放在一个package下后就不再提示这个错误. 使用的ide是intellij,之前也有因为没有创建package报错的经历,可能这是intellij必须的
- Python 学习笔记3
人如果从来没有怀疑过自己,那他永远都不会进步. 今天学习Python解释器及其环境. http://www.pythondoc.com/pythontutorial3/interpreter.html
- git: reset
git reset --hard:把commit撤销,意思是不仅此次commit提交的文件从本地版本库的状态重置,而且把此次commit的文件也从本地目录中删除 所以如果你执行之后发现,git sta ...
- 项目管理实践教程二、源代码控制【Source Control Using VisualSVN Server and TortoiseSVN】
在第一篇文章 项目管理实践教程一.工欲善其事,必先利其器[Basic Tools]发布后,根据大家的回复,我需要向大家说明几个问题: 1.为什么要用VisualSVN Server,而不用Subver ...
- 为Android系统内置Java应用程序测试Application Frameworks层的硬件服务
我们在Android系统增加硬件服务的目的是为了让应用层的APP能够通过Java接口来访问硬件服务.那么, APP如何通过Java接口来访问Application Frameworks层提供的硬件服务 ...